[爆卦]智慧製造工程師面試是什麼?優點缺點精華區懶人包

雖然這篇智慧製造工程師面試鄉民發文沒有被收入到精華區:在智慧製造工程師面試這個話題中,我們另外找到其它相關的精選爆讚文章

在 智慧製造工程師面試產品中有8篇Facebook貼文,粉絲數超過2,646的網紅國立陽明交通大學電子工程學系及電子研究所,也在其Facebook貼文中提到, 【2021年 聯電暑期實習菁英計畫】 快來申請【2021年 聯電暑期實習菁英計畫】體驗半導體業的職場生活 讓您提前掌握半導體市場脈動,搶先於半導體浪潮中立足 實習時間:7/5-8/31暑期實習 面試時間:03-05月徵選中 實習地點:聯華電子竹科/南科 實習職缺 : 研發/製程/製程整...

智慧製造工程師面試 在 一顆算頭 讀書帳? ? ? ? ? Instagram 的最讚貼文

2021-09-10 22:12:17

大學宣傳文! - 選華梵,選一個未來!🏆 擔心未來就業,害怕畢業即失業❓ 擔心選錯方向,不喜歡要換系很難❓ 擔心發展不好人脈,未來沒有良師益友互相扶持❓ 學費很貴給家裡造成負擔❓ 這些問題,在華梵都不存在! ✔提供四年全額獎學金💰 ✔最高30萬💰海外學習獎學金,超過4成學生出國學習 ✔老師一對一...

  • 智慧製造工程師面試 在 國立陽明交通大學電子工程學系及電子研究所 Facebook 的最佳解答

    2021-04-01 13:51:20
    有 4 人按讚

    【2021年 聯電暑期實習菁英計畫】

    快來申請【2021年 聯電暑期實習菁英計畫】體驗半導體業的職場生活
    讓您提前掌握半導體市場脈動,搶先於半導體浪潮中立足

    實習時間:7/5-8/31暑期實習
    面試時間:03-05月徵選中
    實習地點:聯華電子竹科/南科
    實習職缺 : 研發/製程/製程整合/智慧製造
    實習資格:大四升碩一(預碩生) 、碩博班等在學學生,電子/電機/物理/化學/化工/材料/光電/機械/資訊/資工/數理統計/工工...等理工相關系所同學
    實習內容:1.體驗新人教育訓練-基礎工程師課程 2.期中座談會分享 3. 體驗實際工程師工作及Case Study 4.期末成果分享 5.增加職場人際關係經營與互動之經驗
    更多實習資訊/報名網頁:
    竹科:https://www.104.com.tw/job/5cqcs?jobsource=company_job
    南科:https://www.104.com.tw/job/77hit?jobsource=company_job

    **請於自傳中說明論文或專題研究方向;預碩生請於學歷欄位註明碩士學歷**

  • 智慧製造工程師面試 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2020-03-15 13:54:45
    有 0 人按讚

    甲骨文預測十大雲端趨勢 九成IT任務將完全自動化

    【CTIMES/SmartAuto 王岫晨 報導】 2020年03月09日 星期一

    在正式邁入2020年之際,甲骨文預測未來技術和企業商業模式將發生以下十大變化:

    預測1:90%的手動IT操作和資料管理任務將完全自動化

    自主資料庫(Autonomous Database)的普及,將改變技術人員需大量時間處理的日常工作,例如備份、擴充、調校、監測和保護關鍵資訊系統。甲骨文預測,90%的手動IT操作和資料管理任務將在2025年完全自動化,工程師將有更多時間發展人工智慧和機器學習等先進技術。例如,自主學習系統可以橫跨多個應用程式自動收集資料,自動以視覺化方式,圖形、圖表和動畫等,呈現數百萬個資料點,讓身處業務部門的終端使用者不必再費心製作和研究傳統報表,能更輕鬆地找出資料中潛藏的趨勢、規律和關聯性。甲骨文相信,在雲端的推動下,這些先進技術將日益普及,走向主流。

    預測2:雲端共用的敏感性資料將擴增600倍

    如今,70%的企業都將重要業務資料儲存在雲端。其中大多數企業採用混合雲,也就是將一部分關鍵業務系統保留在本地部署環境中,而將大部分資料轉移至雲端。面對不斷升級的攻擊方式,確保資料和系統彈性對於企業至關重要。然而,由於網路安全人員嚴重短缺,企業沒有足夠的專業人才來確保安全性。攻擊者能夠輕易對未安裝修補程式的系統發起攻擊。因此,為了防範層出不窮的網路攻擊,企業的最佳選擇是部署自主系統,將進階安全功能融入所有層級——從應用、資料到晶片的IT基礎設施。

    預測3:幾乎所有的企業應用都將包含某種形式的嵌入式AI技術

    透過改變企業接收、管理和保護資料的方式,人工智慧正推動著企業智慧轉型。甲骨文表示,如今許多企業已經意識到,並開始積極部署AI技術以提高工作效率、生產力並降低成本。甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。這將協助企業高階主管和決策者更快速、深入地了解公司營運、員工、市場和客戶狀況。

    預測4:絕大多數供應鏈應用將取決於區塊鏈、機器學習、物聯網等技術

    如今智慧自動化系統運用於各行各業,推動系統設計、物流、製造、基礎設施等典範轉移。而在供應鏈領域,日益增加的客戶期望、不斷縮短的產品週期、各種新的法規和波動不定的需求正不斷挑戰傳統系統的極限,並推動採用新興技術。其中,區塊鏈建立匿名、不可篡改的去中心化、分散式和數位化事務記錄功能,也解決傳統供應鏈面臨的重大挑戰,使全球性的供應鏈,物料和產品在多個供應商、製造商、經銷商、運輸商和服務提供者間流通順暢。虛擬實境(VR)和擴增實境(AR)界面則可以為員工提供更高水準的沉浸式體驗,例如藉助3D的呈現方式,技術員可以更視覺化地查看設備與配置。語音助手可以查找產品資訊、報告生產進度,以及傳達來自IoT感測器關於當前狀況的分析。

    預測5:流程的自動化將擁有更多個人化體驗

    甲骨文認為,人工智慧和自主技術持續深入工作場所,簡化企業日常業務流程,讓業務人員專注於更有意義、更有價值的人際互動。例如,自動化工作流程可以追蹤求職者、處理新員工請求以完善整個招聘流程;據預測,2025年人工智慧和機器人將接管70%的招募工作。AI技術可以基於職位要求審查求職者背景,幫助人力資源團隊找到最合適的人選;聊天機器人可以與求職者溝通和安排面試。這些自動化功能將大幅減輕人力的日常負擔,讓HR團隊專注於招募符合企業文化的優秀人才。

    預測6:80%的大城市將使用物聯網技術,開啟智慧城市計畫

    物聯網技術的發展使社區得以變得更加人性化與靈活。截至2025年,80%的大城市將運用物聯網資料,開啟智慧城市計畫。長遠來看,物聯網技術能夠改善市民間的合作和信任,有助於打造更加團結的城市。隨著這些技術日益普及、成本不斷降低,許多社區將部署固定的監視器和可穿戴設備等智慧資源,進一步提高安全性和透明度。除了上述例子,智慧城市計畫還涵蓋彈性能源和智慧交通等領域。

    預測7:資料科學自動化程度不斷提高

    利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。幸運的是,隨著AI和機器學習技術不斷發展,越來越多的資料科學工作都將自動化,從而大幅提高技術人才的工作效率。此外,隨著AI系統不斷升級,它們將更有效地為業務用戶創造洞察並對結果加以解釋,進而讓資料科學家騰出時間專注於更有價值的工作。

    預測8:AI機器的興起將催生出前所未有的職業

    隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。另一方面,雖然自動化的興起將排除部分手動和重複性工作,但AI的普及同時也將創造全新工作機會及新的職業類型。2025年,機器處理的工作量將達到人類的兩倍。雖然自動化的興起可能會讓員工有所擔憂,但從長遠來看,它能夠促進全球經濟發展,讓人們專注於價值更高的工作,並提高人們的生活品質。

    預測9:網路安全將隨著物聯網和人工智慧的廣泛應用變得更加複雜

    機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。

    預測10:80%的資料將與「物」相關

    在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。

    附圖:甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。

    資料來源:http://www.ctimes.com.tw/DispNews/tw/2003091812QW.shtml

  • 智慧製造工程師面試 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2020-03-15 06:30:00
    有 0 人按讚


    甲骨文預測十大雲端趨勢 九成IT任務將完全自動化

    【CTIMES/SmartAuto 王岫晨 報導】 2020年03月09日 星期一

    在正式邁入2020年之際,甲骨文預測未來技術和企業商業模式將發生以下十大變化:

    預測1:90%的手動IT操作和資料管理任務將完全自動化

    自主資料庫(Autonomous Database)的普及,將改變技術人員需大量時間處理的日常工作,例如備份、擴充、調校、監測和保護關鍵資訊系統。甲骨文預測,90%的手動IT操作和資料管理任務將在2025年完全自動化,工程師將有更多時間發展人工智慧和機器學習等先進技術。例如,自主學習系統可以橫跨多個應用程式自動收集資料,自動以視覺化方式,圖形、圖表和動畫等,呈現數百萬個資料點,讓身處業務部門的終端使用者不必再費心製作和研究傳統報表,能更輕鬆地找出資料中潛藏的趨勢、規律和關聯性。甲骨文相信,在雲端的推動下,這些先進技術將日益普及,走向主流。

    預測2:雲端共用的敏感性資料將擴增600倍

    如今,70%的企業都將重要業務資料儲存在雲端。其中大多數企業採用混合雲,也就是將一部分關鍵業務系統保留在本地部署環境中,而將大部分資料轉移至雲端。面對不斷升級的攻擊方式,確保資料和系統彈性對於企業至關重要。然而,由於網路安全人員嚴重短缺,企業沒有足夠的專業人才來確保安全性。攻擊者能夠輕易對未安裝修補程式的系統發起攻擊。因此,為了防範層出不窮的網路攻擊,企業的最佳選擇是部署自主系統,將進階安全功能融入所有層級——從應用、資料到晶片的IT基礎設施。

    預測3:幾乎所有的企業應用都將包含某種形式的嵌入式AI技術

    透過改變企業接收、管理和保護資料的方式,人工智慧正推動著企業智慧轉型。甲骨文表示,如今許多企業已經意識到,並開始積極部署AI技術以提高工作效率、生產力並降低成本。甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。這將協助企業高階主管和決策者更快速、深入地了解公司營運、員工、市場和客戶狀況。

    預測4:絕大多數供應鏈應用將取決於區塊鏈、機器學習、物聯網等技術

    如今智慧自動化系統運用於各行各業,推動系統設計、物流、製造、基礎設施等典範轉移。而在供應鏈領域,日益增加的客戶期望、不斷縮短的產品週期、各種新的法規和波動不定的需求正不斷挑戰傳統系統的極限,並推動採用新興技術。其中,區塊鏈建立匿名、不可篡改的去中心化、分散式和數位化事務記錄功能,也解決傳統供應鏈面臨的重大挑戰,使全球性的供應鏈,物料和產品在多個供應商、製造商、經銷商、運輸商和服務提供者間流通順暢。虛擬實境(VR)和擴增實境(AR)界面則可以為員工提供更高水準的沉浸式體驗,例如藉助3D的呈現方式,技術員可以更視覺化地查看設備與配置。語音助手可以查找產品資訊、報告生產進度,以及傳達來自IoT感測器關於當前狀況的分析。

    預測5:流程的自動化將擁有更多個人化體驗

    甲骨文認為,人工智慧和自主技術持續深入工作場所,簡化企業日常業務流程,讓業務人員專注於更有意義、更有價值的人際互動。例如,自動化工作流程可以追蹤求職者、處理新員工請求以完善整個招聘流程;據預測,2025年人工智慧和機器人將接管70%的招募工作。AI技術可以基於職位要求審查求職者背景,幫助人力資源團隊找到最合適的人選;聊天機器人可以與求職者溝通和安排面試。這些自動化功能將大幅減輕人力的日常負擔,讓HR團隊專注於招募符合企業文化的優秀人才。

    預測6:80%的大城市將使用物聯網技術,開啟智慧城市計畫

    物聯網技術的發展使社區得以變得更加人性化與靈活。截至2025年,80%的大城市將運用物聯網資料,開啟智慧城市計畫。長遠來看,物聯網技術能夠改善市民間的合作和信任,有助於打造更加團結的城市。隨著這些技術日益普及、成本不斷降低,許多社區將部署固定的監視器和可穿戴設備等智慧資源,進一步提高安全性和透明度。除了上述例子,智慧城市計畫還涵蓋彈性能源和智慧交通等領域。

    預測7:資料科學自動化程度不斷提高

    利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。幸運的是,隨著AI和機器學習技術不斷發展,越來越多的資料科學工作都將自動化,從而大幅提高技術人才的工作效率。此外,隨著AI系統不斷升級,它們將更有效地為業務用戶創造洞察並對結果加以解釋,進而讓資料科學家騰出時間專注於更有價值的工作。

    預測8:AI機器的興起將催生出前所未有的職業

    隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。另一方面,雖然自動化的興起將排除部分手動和重複性工作,但AI的普及同時也將創造全新工作機會及新的職業類型。2025年,機器處理的工作量將達到人類的兩倍。雖然自動化的興起可能會讓員工有所擔憂,但從長遠來看,它能夠促進全球經濟發展,讓人們專注於價值更高的工作,並提高人們的生活品質。

    預測9:網路安全將隨著物聯網和人工智慧的廣泛應用變得更加複雜

    機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。

    預測10:80%的資料將與「物」相關

    在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。

    附圖:甲骨文預測,到2025年,幾乎所有企業應用都將包含某種形式的嵌入式AI技術。

    資料來源:http://www.ctimes.com.tw/DispNews/tw/2003091812QW.shtml

你可能也想看看

搜尋相關網站