[爆卦]數位簽章完整性是什麼?優點缺點精華區懶人包

雖然這篇數位簽章完整性鄉民發文沒有被收入到精華區:在數位簽章完整性這個話題中,我們另外找到其它相關的精選爆讚文章

在 數位簽章完整性產品中有5篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改 人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警 2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室 本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免...

  • 數位簽章完整性 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2021-05-29 18:18:27
    有 0 人按讚

    機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改

    人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警

    2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室

    本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。

    長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。

    據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。

    立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。

    由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。

    其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。

    另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。

    根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。

    背景知識說明

    本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。

    由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。

    何謂人臉辨識

    人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。

    目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:

    ‧ 普遍性:屬於任何人皆擁有的特徵。

    ‧ 唯一性:除本人以外,其他人不具相同的特徵。

    ‧ 永續性:特徵不易隨著短時間有大幅的改變。

    ‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。

    ‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。

    人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。

    人臉辨識的步驟

    人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。

    人臉偵測

    基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。

    Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。

    人臉的預處理

    偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:

    ‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。

    ‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。

    ‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。

    人臉特徵摘取

    關於人臉特徵摘取,相關的技術說明如下:

    ‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。

    ‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。

    ‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。

    何謂酒精鎖

    酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。

    根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。

    在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。

    許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。

    對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。

    認識區塊鏈

    區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。

    區塊鏈的原理與特性

    可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。

    關於區塊鏈的特性,可分成以下四部分做說明:

    1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。

    2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。

    3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。

    4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。

    區塊鏈與酒精鎖

    由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。

    酒駕防偽人臉辨識系統介紹

    為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。

    在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。

    如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。

    區塊鏈打包上鏈模擬

    在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。

    要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。

    將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。

    情境演練說明

    話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。

    已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。

    待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。

    酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。

    系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。

    如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。

    結語

    酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。

    為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。

    附圖:圖1 人臉辨識的步驟。
    圖2 人臉特徵點偵測(正臉)。
    圖3 人臉特徵點偵測(左側臉)。
    圖4 人臉特徵點偵測(右側臉)。
    圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
    圖6 區塊鏈分散式節點的概念圖。
    圖7 系統概念流程圖。
    圖8 取出人臉128維特徵向量。
    圖9 儲存車輛相關資料及人臉資料到區塊。
    圖10 HASH後及打包成區塊的結果。
    圖11 汽車發動前小禛的人臉影像。
    圖12 小禛的人臉影像特徵點。
    圖13 小禛的人臉特徵向量資料。
    圖14 系統通過酒測檢測者與駕駛人為同一人。

    資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D

  • 數位簽章完整性 在 立法委員林為洲 Facebook 的最讚貼文

    2020-11-02 15:21:45
    有 773 人按讚

    【換發數位身分證 信任比技術更重要】

    原定今年十月換發的數位身分識別證(New eID),因新冠肺炎疫情影響而決定延宕換發,日前內政部部長徐國勇於立法院內政委員會接受質詢時表示,預計明年將於澎湖縣、新竹市、新北市板橋區、新北市中和區等地區進行小規模試辦換發數位身分證。並規畫明年7月全面換發數位身分證。

    根據內政部規劃未來數位身分證將支援高達16項的憑證項目(包含護照簽證、公投聯署、國民年金、勞保、育兒津貼等 16 項)在內,民眾可選擇是否啟用憑證功能,若啟用即具備網路身分辨識及電子簽章的功能。此次經財政委員會安排考察製作我國數位身分證的中央印製廠,實際了解未來數位身分證的製造流程,以及對於民眾最在意的資安問題進行詢問。

    我們羅列了多項問題,內容包含數位晶片身分證空白卡製造、採購後續印製設備和卡片內資料眾多是否產生資料濫用等相關問題,因日前媒體報導數位晶片空白卡得標廠商由東元電機得標,但轉手多家分包廠商國外工廠製作。且中央印製廠採購的個人化印製設備系統,與中國大陸製作社保卡的系統相同。此類問題皆攸關我國民眾資安上的疑慮,和政府在取得國人相關資料是否有管制與配套措施。

    我們希望政府對於換發數位身分證,需考慮是否有其急迫性,政府應考量是否能保證人民資安的完整性,我們不希望如數位模範國愛沙尼亞的空白卡遭留後門事件,未來會在台灣發生。政府應該先取得民眾的信任,再進行全面換發。因為全台個資如上傳網路後,一但遭駭,將成為國家一大危機。

    林為洲服務團隊

    #中央印製廠
    #數位身分證
    #NeweID
    #資安問題

  • 數位簽章完整性 在 Buan 月亮說話 月亮曆 Facebook 的最佳貼文

    2020-08-26 15:11:34
    有 26 人按讚

    【文摘 / 醫療廣角鏡】原住民的基因是全球頂級商品

    鄭春鴻於8/21日投書民報,跟我們分享了近年來基因庫商機崛起後,原住民族基因炙手可熱的各種前因,並且精準的將矛頭指向眾多財團與政府大型計劃裡,缺少包容性與公平性的利益共享模型。

    到底原住民的基因主權該如何爭取?是被當成動物、還是能夠與全球科學研究一起共享研究成果與獲利?我們來看看以下的文章怎麼說。

    ----------

    當今醫學治療大多是針對「標準化病人」設計,同一個病,用同一個治療準則,甚至同一藥物。這種「標準治療策略」雖然在許多病人身上曾經很成功,但對某些病人卻無法奏效,因為這樣的「概全性治療」忽視了病人的個體差異和疾病的異質性。而「精準醫學」(Precision Medicine)就是在針對病人體質差異和疾病的異質性的特殊考量下,所訂定出來的疾病預防和治療策略。舉例來說,罹患同一種癌症,即使又是同一期別的病人,但不一定吃同一種標靶藥;而必須進行基因檢測,分辨其基因表現的異質性,再來進行不同的治療。

    人類基因數據,已成為全球「頂級商品」

    很早就有人喊出「二十一世紀是精準醫學的世紀」。而這些精準醫學科技發展必須仰賴於:(1)大規模生物數據資料庫(例如 human genome sequence, TCGA database);(2)可以獲得生物資料的科技 (例如: 基因微陣列、大規模平行DNA定序、蛋白質體學、甚至行動醫療裝置科技等等 );以及(3)可以分析大量數據的電腦工具,目前台灣的中央研究院分子生物研究所就有這個能力。

    近年來,原始數據,包括從人類基因組獲得的序列數據,已成為全球「頂級商品」。這種轉變是如此新奇,以至於專家們仍在評估這種數據在全球市場上的價值。2018年,直接面向消費者的基因檢測公司23andMe就以3億美元的價格將其包含約500萬人的數位序列數據資料庫的查找權出售給了全球三大藥廠之一的葛蘭素史克藥廠(GlaxoSmithKline)。今年稍早,23andMe又與西班牙製藥公司Almirall合作,Almirall正在利用這些數據開發用於自身免疫性疾病的新型抗炎藥,這是23andMe首次簽署用於開發藥物的一項許可協議。

    原住民的血液和基因數據可以換鑽石

    我們一家都是「人」,但是每個人都是上帝獨一無二的作品。人與人之間,族裔與族裔之間,都存在其獨特性、異質性。

    來自加利福尼亞大學聖地亞哥分校的人類學系,全球衛生計劃和原住民實驗室的凱魯·福克斯 (Keolu Fox) 博士,7月30日在新英格蘭學期刊(NEJM)最新發表的〈包容的錯覺—「我們所有人」研究計劃與原住民的DNA〉(The Illusion of Inclusion — The「All of Us」Research Program and Indigenous Peoples’ DNA) 指出,在非洲南部的內陸國博茨瓦納(Republic of Botswana)經營的盧卡拉鑽石公司(Lucara Diamond Corporation)最近開始將所有零售額的5%分配給基於社群的利益者共享。結果,博茨瓦納政府開始使用鑽石特許權使用費來做為基礎設施、醫療保健和教育計劃提供資金。可見原住民的血液和基因數據,理當可以成為「利益共享者」來「兌換鑽石」,在藥品開發的商業機制裡,這絕對是公平的。事實上,製藥行業諸如Variant Bio之類的初創公司正在探索長期利益的共享模型,在這種模型下,將使用集體利益模型,來共享使用特定於社群的基因數據開發的藥物,並給予特許權及使用費。

    凱魯·福克斯博士研究指出,涉及人類遺傳變異的大規模研究中,諸如Geisinger Health System,Regeneron Pharmaceuticals,AncestryDNA和23andMe之類的公司已經成為最強的基因數據庫。為了推動該領域的發展,涉及從血樣、問卷、認知調查和其它對參與者進行的測試中,收集精確的測量值。但是這些方法對於參與者來說是「昂貴的」,並且在生理和精神上都是沉重的負擔。但顯然地,科學家可以從這些數據發現全球罕見但本地常見的特定人群的生理變異。

    原住民基因組成是未經探索的「變異寶庫」

    世界許多原住民人口在地理上已經隔離了幾萬年。隨著時間的流逝,這些種群已經適應了他們的環境,從而在其基因組中留下了特定的「變異特徵」。因此,原住民民族的基因組成為了未經探索的「變異寶庫」。這些變異會被諸如美國國立衛生研究院(NIH)的「All of Us」研究計劃識別出來。美國國立衛生研究院的領導人雖然已承諾,該計劃的參與者中至少50%應該是代表性不足的少數族裔的成員,包括美國原住民社群(美國原住民,阿拉斯加原住民和夏威夷原住民),明確地將多樣性與該計劃的目標聯繫在一起,以促進平等享受精確醫學的未來利益。但是我們有理由相信這一承諾可能是一種幻想,開空頭支票而已。

    原住民DNA數據早就被商品化

    凱魯·福克斯博士說,先前的政府曾資助的大規模人類基因組測序工作,例如人類基因組多樣性項目、「國際人類基因組單體型圖計劃」(簡稱HapMap計劃),都提供了修改開放源數據的方法的範例。HapMap項目和1000基因組項目描述人類遺傳變異的常見模式,用於查找影響健康、疾病的遺傳變體和反應藥物和環境因素的影響。 該計劃產生的數據對於研究是「免費提供」的,可以不受限制地、開放地查找有關特定人群的生物標誌數據,最終卻使製藥和血統檢測公司產生了價值近10億美元的利潤,但完全沒有分給受測者一分錢。如果「All of Us」計劃使用相同地採不受限制的數據偵測和共享協議,那麼將沒有內置機制可以防止原住民DNA被商品化。

    製藥公司的科學家們發現B4GALT1基因突變與居住在美國加拿大的原住民艾美許人(Amish)族裔的膽固醇水平較低和纖維蛋白原水平較低相關,這一發現可能會產生新型的膽固醇藥物。

    非洲血統中鑑定出的基因確可開發新藥物療法

    作為藥物開發工作的一部分,許多族裔參加了有關人類遺傳變異的大規模研究。例如,Vertex Pharmaceuticals的下一代囊性纖維化雞尾酒Trikafta(elexacaftor / tezacaftor / ivacaftor和ivacaftor)是利用囊性纖維化患者的數字序列數據和囊狀纖維化症基金會(Cystic Fibrosis Foundation)的資金開發的。在非洲血統中鑑定出的基因座導致了PCSK9抑製劑的開發。最近,美國製藥公司Regeneron(生元製藥,Regeneron Pharmaceuticals, Inc.)的科學家們發現B4GALT1基因突變與居住在美國加拿大的原住民艾美許人(Amish)族裔的膽固醇水平較低和纖維蛋白原水平較低相關,這一發現可能會產生新型的膽固醇藥物。艾美許人是很獨特的族裔,它們是基督新教重洗派門諾會中的一個信徒分支,以拒絕汽車及電力等現代設施,過著簡樸的生活而聞名。

    儘管這些研究的參與者可能會從新療法的開發中受益,但尚不清楚是否使用從這些人群的研究中獲得的數據開發的任何藥物給予它們甚麼補貼、特許權使用費或知識產權。而且,這類新藥物的價格常常使被研究人群中的大多數病人難以承受的。例如,Vertex的囊性纖維化藥物每年定價超過30萬美元。科學倫理上規定,在進行人類受試者研究的通用規則明確指出:「不應對無法從結果中受益的人群進行研究」,上述結果,新療法使受測者無法負擔藥價,這當然違反了該項原則。

    藥廠科學家吃香喝辣,原住民分不到一杯羹

    原住民理所當然地會擔心從他們基因組研究獲得的藥物被商品化的趨勢,因此,他們有時不願參加基因組研究。所有的科研調查人員都有興趣從本地人群中招募參與者,但鑑於涉及原住民民族的遺傳研究歷史悠久,包括印第安人保護區是美國印地安原住民Havasupai人起訴亞利桑那州立大學的案例,在該案例中,部落成功起訴大學以不當方式使用其成員的血液樣本。也因此印第安人保護區會繼續對參加NIH的最新研究保持警惕,也是理所當然的。總不能藥廠科學家拿了印第安人的基因發明藥物賺了大錢吃香喝辣,原住民或少數民族被當成「動物」研究,卻分不到一杯羹。

    數據和政策的商品化允許不受限制地使用數據,從而擴展了族群被邊緣化的歷史,並剝奪了原住民就如何以及在何種情況下,可以使用自己的生理數據做出決策的權利。如果「All of Us」的調查人員都想招募原住民社群成員,就應該將原住民納入有關數據進行測試、數據使用和知識產權的政策制定中。提倡「原住民基因數據主權」這一新概念的倡導者,呼籲原住民更多地參與數據和生物樣品的管理,並呼籲使用定義樣品使用權的數位工具,以提高使用過程中的透明度和完整性,也就是隨時可查考誰用了這些數據。

    將平台的收益分配給共享其DNA進行研究的人們

    促進向「公平利益共享」標準化邁進的一種方法是,確保原住民擁有來自原住民的數據的控制權,現已經使用了兩種方法來實現此控制:個人利益模型(也稱為股東模型,涉及股票的部分所有權)和集體利益模型(涉及社群信任)。LunaDNA是社群所有權的生物醫學研究平台,也是部分所有權模型的一個範例。這家公益公司將平台的收益分配給共享其DNA進行研究的人們。可以與NIH和製藥公司合作建立社群信託,不僅可以提供對藥品的補貼,而且可以對參與基因組研究的社群進行再投資。事實上,在多個行業中,存在基於社群合作夥伴的利益共享的先例。2019年11月,南非政府宣布根據《名古屋議定書》,南部非洲的科伊桑人(Khoi-San)將分享豐厚的利潤。

    預防醫學的未來必須兼具公平和包容性

    當我們繪製預測和預防醫學的未來的地圖時,公平和包容性應引導著美國的創新軌跡。正如礦採業一樣,當我們想要在某地挖取石油,總會先探勘什麼環境可持續性取得利益一樣:同樣地,當數據是有爭議的可商品化資源時,我們也要提出問題:什麼是社會和文化可持續性?誰可以取得基因數位序列數據?依賴共享寶貴數據集的伙伴關係會是怎樣?應如何分享利益?以及我們如何以尊重各族裔的貢獻並鼓勵對被邊緣化群體的投資和能力,用來建設開發藥品,同時仍然為藥品開發和商業研究與發展提供激勵?

    「All of Us計劃」的成功將取決於回答這些問題。隨著新技術在人類驅動療法領域的融合,利用人類遺傳變異研究數據開發貴重藥物的機會將成倍增加。在這一領域將需要進行公平的創新,以確保真正實現「All of Us」的利益。

    文章連結:
    https://reurl.cc/0ODqaA

    #原住民基因成為頂級商品
    #預防醫學應兼顧公平和包容性

    Icon DNA by Justicon
    from the Noun Project

    --------------------
    厭倦都市雜音,來聽月亮說話:
    喜歡就按下追蹤吧!
    別忘記分享到限時動態喔!

    #Buan #Buanistalking
    #月亮說話 #月亮曆
    #來追月亮囉

    #語錄 #藝術 #文字
    #文化 #文學 #原住民

你可能也想看看

搜尋相關網站