[爆卦]數位瓦斯壓力表是什麼?優點缺點精華區懶人包

雖然這篇數位瓦斯壓力表鄉民發文沒有被收入到精華區:在數位瓦斯壓力表這個話題中,我們另外找到其它相關的精選爆讚文章

在 數位瓦斯壓力表產品中有2篇Facebook貼文,粉絲數超過5萬的網紅林薇Vivi,也在其Facebook貼文中提到, #一封寫給親愛的臺灣與我們的信​ ​ 親愛的臺灣,還記得前年十二月,​ 一則傳上PTT的消息,讓你響起了警鈴,​ 超前部署地開始了物理性的防禦,​ 用了當時你可以做到的各種方式,​ 守住了這片島嶼,我們的家。​ ​ 那個時候,​ 即便備受質疑,也有反對的聲音說著,​ 有需要這麼緊張、這麼大費周章嗎?...

數位瓦斯壓力表 在 林薇 Vivi Lin Instagram 的最佳貼文

2021-06-16 00:36:17

一封寫給親愛的臺灣與我們的信​ /​ 在疫情依舊嚴峻的現在, 除了憂慮、不安、抱怨與指責,​ 有些話,我想在這邊跟大家分享。​ (全文請見臉書,以下節錄)​ ​ 如果可以,讓我們一起練習相信專業,​ 不再因為焦慮,而對自己沒有把握的事情發表斷言不 再因為恐懼,而開始對專業失去信心。​ 讓我們練習相信...

  • 數位瓦斯壓力表 在 林薇Vivi Facebook 的最讚貼文

    2021-06-10 20:31:06
    有 3,261 人按讚

    #一封寫給親愛的臺灣與我們的信​

    親愛的臺灣,還記得前年十二月,​
    一則傳上PTT的消息,讓你響起了警鈴,​
    超前部署地開始了物理性的防禦,​
    用了當時你可以做到的各種方式,​
    守住了這片島嶼,我們的家。​

    那個時候,​
    即便備受質疑,也有反對的聲音說著,​
    有需要這麼緊張、這麼大費周章嗎?​
    你依舊沒有動搖,選擇在最快的時間內,​
    將各式專業,各就各位,同島一命,守護家園。​
    興許是想起了過往沉痛SARS的記憶,​
    興許是習慣了令人懷疑的,來自中共的消息,​
    也興許,是你我都不願讓任何一絲萬一,​
    降臨在我們都最愛的家園之上,​
    成為拆散你我的原因,​
    所以選擇承擔質疑,也要守住防線。​

    於是當世界共同陷入危難,​
    當這場戰疫成為了人人自危,​
    成為了沒有人得以倖免的全球大空襲。​
    城市停擺、交通阻斷、一切事務暫停,​
    原本地球村引以為傲的無邊無際,​
    突然之間,變成了你我從沒想過,​
    那沒有結束期限、更無法預測下一秒,​
    不知何時才能再次抵達的,最遙遠的距離。​

    但親愛的我們,​
    在過去那一年裡,​
    我們卻曾經像什麼都沒有發生一樣的,​
    自在生活著,自由穿梭著,自信擁抱著,​
    在臺灣,這片我們稱之為家的土地上。​
    這不是因為我們得天獨厚,更不是湊巧,​
    是因為有多少人在這段時間裡,​
    持續犧牲著每天的生活,​
    承擔著無法想像的壓力,​
    持續守在那病毒隨時都可以衝破的邊際,​
    用他們的所能所長,守護著這片島嶼,​
    還有那在家園裡,持續歡笑著的我們。​

    過去一年裡,邊境一線人員的檢疫、防護,​
    沒有停歇、沒有休息;​
    過去一年裡,防疫工作者的研究、調查,​
    沒有停擺、沒有鬆懈、更沒有一刻不感到壓力;​
    過去一年裡,病毒對世界的威脅,​
    也從沒有離開過我們的生活,​
    只是我們被保護的,幾乎忘了它的存在。​

    是的,我們在這一年當中,​
    確實還有很多的超前部署可以做,​
    但沒能來得及做到、做好、做得盡善盡美。​
    是的,在這一年當中,​
    面對每一個不一樣的決定,即便已經參考了多方觀點,​
    還是有那麼一絲一毫的機會,會產生差錯,​
    無論我們多麼努力。​
    是的,站在不同崗位上的人們,​
    承載著不同的期待,確實有他們的責任,​
    也有他們義務上需要承擔的風險,​
    更不代表即便他們盡力了、嘗試了,​
    就可以去解釋任何產生的差錯。​
    但是也是的,在過去一年裡,​
    我們過了與世界上好多人幾乎完全不一樣的舒適生活,​
    而那是多少人,一同負重前行,才得以換來的歲月靜好。​

    所以此時此刻,我想說的是,​
    親愛的我們,​
    一起看看身旁的家人,或是螢幕前的自己。​
    現在的你我還能待在家中,吹著電風扇​
    想著這餐要煮什麼,下一部影集要看什麼,​
    盤點明天WFH的工作項目有哪些,​
    其實已經是一件多麼幸運的事情。​

    親愛的我們,​
    這樣新型態的生活模式,確實算不上是最舒服,​
    甚至讓人開始難受、焦慮、不知所措,​
    不斷思考著,什麼時候可以結束。​
    但讓我們想想,那每天上升的確診與消殞數字,​
    每一個,都是跟你我一樣,是被人們愛著的人,​
    是這片島嶼上良善的生命、努力的人們。​
    因此,在這段時間裡 #如果可以,​
    請讓我們一起努力守在家中,​
    不要移動、不要群聚、做好防疫,​
    忍著一時,保護家園度過這多舛的一年。​

    如果可以,#讓我們一起練習相信專業,​
    不再因為焦慮,而對自己沒有把握的事情發表斷言,​
    不再因為恐懼,而開始對專業失去信心。​
    讓我們練習相信醫療、研究、防疫工作者,​
    他們這麼多年不辭辛勞的訓練與經驗,​
    會能夠在最需要他們的時候派上用場。​
    讓我們一起學習,可以對不同的決定與執行方法,​
    提出質疑,提出討論,提出不同觀點,​
    但不去對於不了解的事情惡意指責,​
    更謹慎小心不造謠,不刻意製造恐慌,​
    讓早已複雜的現況,更加陷入無解。​

    如果可以,#讓我們趁這個機會跟上數位轉型,​
    跟著世界的腳步與趨勢,讓不同的產業,​
    都有機會可以透過新時代的科技,​
    超越距離與時間的限制,打出新一片天下。​
    讓我們將這次的危機,​
    轉變為突破另一種限制的轉機,​
    讓疫情之後的我們,無論身處哪一個崗位,​
    都多加上了數位科技的強項,​
    不僅不會再因為距離無法到達,而備受限制,​
    更因為擁有數位的能力,而擁有更多的彈性。​

    如果可以,#讓我們多關心WFH又要顧孩子的家長,​
    他們真的真的一點都不容易,​
    每天都在即將爆炸的邊緣徘徊。​
    如果你的同事在開會時有孩子不小心闖入,​
    請別急著指責他,因為他可能已經好努力地,​
    將孩子放在遠方的椅子上、房間裡,​
    但他們還是沒有辦法控制的,​
    有需求需要即刻尋求家長協助。​
    讓我們多一點體諒,也多一點關心,​
    現在的家長24小時之中得一邊適應新的工作方式,​
    還得一邊適應突然整天都在身邊,​
    時刻不得停歇的,有孩子的生活。​
    他們或許需要找人暫時放鬆聊聊,​
    或許需要你我營造更友善的環境,​
    也或許,就只是需要片刻的寧靜,​
    而這些,總有什麼,是我們可以更多做一點,​
    讓他們生活可以更好過一些的。​

    如果可以,#讓我們一起接住同在疫情之中的你我,​
    這片土地上,雖然每一個人在病毒面前,​
    都是弱者,都無法抵抗,也都是平等的,​
    但受到疫情影響的衝擊程度,卻是有所差異的。​
    在平常的生活裡,我們思考著未來、思考著方向,​
    但不是每一個人,都有敢夢敢想的權利;​
    而疫情嚴峻的現在,​
    當我們思考著要用什麼方式維持運動習慣、​
    維持心情、維持健康飲食,​
    卻有些人需要擔心的,​
    是孩子會不會斷糧、水電瓦斯會不會斷線、​
    房租會不會無從籌措,​
    連下個月會不會有個遮風避雨之處,都成了未知。​
    此時的我們,如果還有能力,​
    且讓我們用各種方式,捐款捐物,​
    甚至是分享資訊,都是種支持,​
    一起接住,那一樣身在疫情之中,​
    或許素昧平生,但真的需要協助,​
    且就身在你我身邊,如此靠近,​
    同住這片土地上的人們。​

    如果可以,#讓我們多體諒一線與戶外工作者,​
    不論是風雨疫情皆無阻,甚至沒有他們,​
    許多人在現在根本難以溫飽的外送員,​
    又或是本就在互外工作的,做工的人們,​
    還有那些日夜替我們在這個接觸被限制的情況下,​
    將文件、包裹順利送達不同目的地的物流人員們。​
    他們跟我們一樣害怕病毒,​
    擔心自己的家人會受到影響,​
    但他們不只是為了維持工作、維持生計,​
    也為了我們的生活得以持續運行,​
    所以忍著不能接觸家人孩子、​
    忍著在30多度悶熱的夏天,​
    戴著早已濕透的口罩面罩,​
    忍著得蹲在路邊偷偷拿下口罩吃飯,​
    還有可能會被罵防疫破口,忍著隨時會被染疫的風險,​
    卻還是堅守在第一線努力著。​
    而我們能做的,是別刻意用鏡頭與言語,​
    做出我們絕對不會對自己家人朋友做出的針對行為,​
    多一點體諒,也多一點同理,​
    讓疫情期間,能少一點衝突,多一分團結。​

    如果可以,#讓我們對醫護與防疫人員表達最誠摯的支持與感謝,​
    他們在疫情尚未降臨的時候,​
    就日夜在生死交關的第一線,​
    承擔著無比的壓力與無數的挑戰。​
    而在疫情籠罩的現在,​
    他們更是不曾停歇、不曾鬆懈,​
    持續守在與病毒最近的距離​
    用他們的專業,與病毒直球對決,​
    只為盡力讓每一個岌岌可危的生命,​
    每一個在這片島嶼上被人們愛著的人,​
    都能不在這場戰疫之中,被無情帶走。​

    如果可以,#讓我們一起守護我們的家臺灣,​
    每一天,都有可能是一失足成千古恨的危機點,​
    每一天,也都有可能是得以守住防線的致勝關鍵,​
    而我們能做的事情,雖然一直一直都不多。​
    卻每一項都無比重要、必要,​
    而且得要每個人,都努力做到,​
    因為透過微小的行為,​
    待在家、戴口罩、勤洗手、不接觸、​
    端午節不跨區移動、不多人群聚,​
    我們才真的有機會,可以讓疫情不再蔓延,​
    也才真的有機會,可以在九局下半,​
    守住最後防線,逆轉勝出。​

    在死亡面前,人人都是平等的,​
    在病毒面前,你我也都是同等脆弱,​
    同島一命,團結抗疫,​
    現在的我們,​
    正站在這個至關重要的十字街口,​
    只要我們願意,​
    讓那些如果,#不再是如果,​
    親愛的臺灣,與親愛的我們,​
    一定可以再次打贏這場戰疫。​

    2021/06/10​
    Vivi Lin​
    一個跟你一樣深愛著這片土地的臺灣人​

    背景:Photo by Henry & Co. on Unsplash

  • 數位瓦斯壓力表 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2021-03-08 18:09:20
    有 1 人按讚

    迎接終端AI新時代:讓運算更靠近資料所在

    作者 : Andrew Brown,Strategy Analytics
    2021-03-03

    資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。

    這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。

    資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。

    對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。

    與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。

    資料正在帶動從集中化到分散化的轉變

    隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。

    智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。

    從邊緣到終端:AI與ML改變終端典範

    在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。

    在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。

    終端AI:感測、推論與行動

    在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。

    處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。

    感測

    處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。

    它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。

    推論

    終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。

    例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。

    行動

    資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。

    終端 AI:千里之行始於足下

    從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。

    這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。

    隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。

    TinyML、MCU與人工智慧

    根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」

    微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。

    物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。

    受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。

    儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。

    如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。

    AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。

    終端智慧對「3V」至關重要

    多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。

    Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。

    如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:

    震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
    視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
    語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
    垂直市場中有多種可以實作AI技術的使用場景:

    震動

    可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:

    溫度監控;
    壓力監控;
    溼度監控;
    物理動作,包括滑倒與跌倒偵測;
    物質檢測(漏水、瓦斯漏氣等) ;
    磁通量(如鄰近感測器與流量監控) ;
    感測器融合(見圖7);
    電場變化。

    一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。

    語音

    語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。

    在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。

    語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。

    對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。

    視覺

    正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。

    曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。

    使用場景

    預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。

    震動分析

    這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。

    磁感測器融合

    磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。

    聲學分析(聲音)

    與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。

    聲學分析(超音波)

    聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。

    熱顯影

    熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。

    消費者與智慧家庭

    將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。

    消費者基於各種理由使用智慧音箱,最常見的使用場景為:

    聽音樂;
    控制如照明等智慧家庭裝置;
    取得新聞與天氣預報的更新;
    建立購物與待辦事項清單。

    除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。

    終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。

    健康照護

    用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。

    其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。

    結論

    由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。

    解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。

    儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。

    終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。

    附圖:圖1:從集中式到分散式運算的轉變。
    (資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
    圖2:全球上網裝置安裝量。
    (資料來源:Strategy Analytics)
    圖3:深度學習流程。
    圖4:MCU的視覺、震動與語音。
    (資料來源:意法半導體)
    圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
    (資料來源:意法半導體)
    圖6:物聯網企業對企業應用的使用-目前與未來。
    (資料來源:Strategy Analytics)
    圖7:促成情境感知的感測器融合。
    (資料來源:恩智浦半導體)

    資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI

你可能也想看看

搜尋相關網站