為什麼這篇微積分計算題鄉民發文收入到精華區:因為在微積分計算題這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者ark0606 (葉老)看板Transfer標題[其他] 96-101成大微積分考題分析時間Tu...
微積分計算題 在 Mei ✿ 台大生日常 Instagram 的最佳貼文
2021-08-18 20:27:08
哪個是大學生必備,平板?電腦? - 嗨嗨各位👋🏻 前陣子陸續有朋友來和我說想買平板啊、想換電腦之類的, 不知道大家是否也有這個疑惑呢? 所以我想今天就來和大家分享Mei的使用經驗和看法, 有興趣就繼續看下去吧! - 就Mei的觀察,現在的大學生幾乎每個人都有一台筆電。 只有用平板的人超級稀少。 另外...
今天成大簡章出來了 想一想順便來分析一下好了XD
──────────────────────────
│ │ │ │ │ │ │
│年 份│ 極 限 │ 微 分 │ 積 分 │ 級 數 │ 向 量 │
──────────────────────────
│ │ │ │ │ │ │
│ 101 │ 6 │ 4 0 │ 4 2 │ 1 2 │ 0 │
│ │ │ │ │ │ │
──────────────────────────
│ │ │ │ │ │ │
│ 100 │ 1 4 │ 2 4 │ 5 0 │ 1 2 │ 0 │
│ │ │ │ │ │ │
──────────────────────────
│ │ │ │ │ │ │
│ 099 │ 0 │ 4 8 │ 4 0 │ 1 2 │ 0 │
│ │ │ │ │ │ │
──────────────────────────
│ │ │ │ │ │ │
│ 098 │ 3 5 │ 1 5 │ 4 0 │ 1 2 │ 0 │
│ │ │ │ │ │ │
──────────────────────────
│ │ │ │ │ │ │
│ 097 │ 1 0 │ 4 4 │ 3 6 │ 1 0 │ 0 │
│ │ │ │ │ │ │
──────────────────────────
│ │ │ │ │ │ │
│ 096 │ 0 │ 3 0 │ 3 0 │ 1 0 │ 3 0 │
│ │ │ │ │ │ │
──────────────────────────
101:
1.(a)條件函數,求微分要利用定義做
(b)將微分後的函數列出來,再利用連續概念:極限值=函數值
2.定積分,利用變數變換搭配分部積分
3.將函數先積分再微分,arcsin(x)的馬可洛林級數要微分再以二項式展開可得
此級數和相當不好做也很難想!!
4.級座標算旋轉曲面表面積
5.雙重積分,交換積分次序後再計算
6.雙重積分,先轉換成極座標後再計算
7.較特殊的偏微分題目
(1)題目只給定w,x的關係,y,z並未給定,故要討論所有可能情形,即
w=w(x,y,z(x,y))、w=w(x,y(x,z),z)
(2)將兩式對x偏微分即可求解
8.變化率的應用題,還用到了餘弦定理
9.經濟上的多變數求極值,題目不算很難理解
100:
1.(a)包含高斯函數的極限,要利用左右極限
(b)羅必達搭配微積分基本定理的極限
2.基本的極值、凹向、反曲點問題
3.定積分,變數變換搭配分部積分
4.一般的旋轉曲面表面積的問題
5.馬可洛林級數的應用:求級數和,好好善用微分吧
6.積分均值定理的三度空間形式,可從單變數的幾何意義上去推得
7.和97台聯大一模一樣的題目,沒給hint超狠的阿…
8.多變數求極值,計算量稍大
99:
1.(a)求漸近線,3種漸近線的算法要熟
(b)一般的極值問題
2.(a)利用馬可洛林級數展開算積分再整理成sigma
(b)這邊的domain相當於級數的收斂區間!!
3.搭配微積分基本定理的微分
4.雙重積分,先交換積分次序之後再計算
5.無限制條件求多變數極值
6.此為柯西方程式(出到這個實在是有點誇張…),利用變數變換轉換成常係數O.D.E後
再解微分方程
7.可先變數變換後利用偏微分證明關係
8.三重積分求體積,題目只是要寫成圓柱座標形式再計算
98: (1.3.4.5.10題都有給hint,建議照著hint來做答較好)
1.黎曼和
2.(a)利用對數微分法求微分
(b)超多學校考過的極限
3.利用變數變換的不定積分
4.可先變數變換或是直接做分部積分
5.夾擠定理是要證明積分式取極限後為0,必須先找出不等式來證明;
知道此為0乘無限大題型後,把一個擺到分母算極限
6.一般的收斂半徑運算
7.限定用LM來計算限制條件下的多變數極值
8.參數形式的旋轉曲面表面積
9.證明此多變數極限不存在
10.雙重積分,利用極座標轉換;hint即為正餘弦疊合
97:
1.包含高斯函數的極限,要利用高斯函數的不等式,再利用夾擠
2.一般的收斂區間問題;級數和需要想到ln(1+x)的馬可洛林級數,不好想也不太好湊
3.(a)利用參數微分求切線斜率
(b)參數形式的弧長問題
4.典型的繪圖相關問題
5.高階導數,配合馬可洛林級數較佳
6.定積分,可直接分部積分
7.雙重積分,利用極座標轉換
8.較特殊的偏微分題目
(1)題目給定x,y為獨立變數,此函數為w=w(x,y,z(x,y))
(2)將兩式對x偏微分即可求解
9.有兩個限制條件下的多變數極值,盡量化簡到只有一個限制條件較好
10.一般的旋轉體積計算,使用圓柱殼法較好
96:
1.若函數為一常數,其微分值微0;而此函數為條件函數,可能有2個常數
2.一般的收斂區間的問題;級數和需要想到ln(1+x)的馬可洛林級數,要硬湊出來,不
太好想
3.利用積分均值定理求平均值
4.證明是個瑕積分,想辦法證明函數趨近於某個點會發散,再算瑕積分
5.向量搭配位置、速度、加速度的關係,要知道這3者的性質
6.曲面上的點取梯度即為該點的法向量
7.在一區域包含邊界求多變數極值
8.在某個點做一次、二次微分,注意會有兩個答案,而且計算量很大
9.雙重積分,先利用線性轉換後再計算
10.曲面表面積計算,要用顯函數公式(雖然是算球面的一部份,但如果用球座標形式會
做不出來)
小結:
以往成大是工商不分 而且又都是計算題
寫計算題的時候請盡量詳細 因為成大改的算是很嚴格的
就想像你是在寫這份考卷的詳解就對了~
可是沒想到今天簡章出來 成大今年竟然要分卷了!!
這樣子害我不知道要寫什麼才好囧…
就以分析這幾年來講 比較著重於微分、積分
向量大概是因為工商不分的關係 很少出到(不過今年就很難講了 尤其是工科)
極限的部分還是以綜合為居多(最近分析起來好像也只能這樣出XD)
不過有包含高斯函數的極限倒是要注意
單變數微分 尤其是關於繪圖的問題要很熟悉
有些微分題目的計算量也稍大(96) 計算時要小心
或者是應用問題 有些題目也很漂亮(101)
多變數微分還是以極值為主 並且要熟悉LM(有時後會限定做法)
成大會出蠻特殊的偏微分(97.101) 解題概念要懂
單變數積分難度不會很大 反而是要注意其應用(瑕積分、弧長、體積、表面積)
有時後在這邊會出現意想不到的題目
多重積分的部分
二重積分的話 題目會”好心”先請你做些轉換後再積分
不過在極座標轉換的部分變化性就比較大一點
三重積分也是如此 看清楚題目要做什麼再回答
微分方程99出過一題 不過已經是到工數的程度 有點慘忍
幸好題目有先做變數變換轉換成常係數O.D.E再求解
不然這一題一定打死一票人阿…
級數的部分 收斂區間和半徑沒什麼變化性
應用上面就很重要 例如說求微分值、積分值、級數和等等
級數和要特別小心 並且要訓練自己的思考 因為很不容易想到
善用一下馬可洛林級數吧!!
另外101年考的證明也是頗難的 不管是想法還是計算上都是
向量微積分就向前面所說的 由於工商不分就比較少考
可是萬一今年真的分了 那麼工科就要小心這一塊了
商科的話 因為之前也有出過 還是注意一下為妙
接下來的分析讓我有一點苦惱了
因為幾乎都是各系出題阿!!!!
這樣分析起來真的超級頭痛的
想請教各位轉胞們一些建議
目前方案有二:
一、真的給他硬幹下去吧!!
二、由你們提出想要分析的科系再進行
就再麻煩你們了>///<
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.211.50