[爆卦]微積分偶數題答案是什麼?優點缺點精華區懶人包

雖然這篇微積分偶數題答案鄉民發文沒有被收入到精華區:在微積分偶數題答案這個話題中,我們另外找到其它相關的精選爆讚文章

在 微積分偶數題答案產品中有9篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【處處極限不存在的函數】 . 我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個...

 同時也有9部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本影片運用分部積分法計算 arcsinx 的積分和 arctanx 的積分;雖然都只有單一個函數,但跟前面的精選例題一樣,透過將之看成 1 乘上本身的方式,一樣可以用分部積分算出答案 【勘誤】 無,若有發現任何錯誤,歡迎留言告知 【講義】 請到張旭老師臉書粉專評論區留下你的評論 然後私...

微積分偶數題答案 在 生奧之路 Instagram 的最佳解答

2021-07-11 08:51:36

原本這一篇應該是我要還原當初學測寫的靜夜情懷。(對,我大考寫生奧文還有17分 還可以吧) 我試著還原當初學測寫的靜夜情懷,但小弟不才所以寫不出來。 之後也請一位「天生自帶文氣的學弟」幫我還原我腦中的想法,可是他最近太忙了,正在準備生奧。另一位隱藏(很偶爾/前)編輯也正在認真準備學測QQ 也在休刊...

  • 微積分偶數題答案 在 數學老師張旭 Facebook 的最佳貼文

    2021-08-03 04:07:07
    有 41 人按讚

    【處處極限不存在的函數】
    .
      我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個問題,那就是在設計了一個在某一點,例如說 a 點,極限不存在的函數以後,要如何改造這個函數,才有辦法讓 a 點「旁邊」的點其極限也不存在。
    .
      (接下來的內容,建議同學們可以拿支筆在紙上按照說明把函數畫出來)
    .
      舉例來說,如果我們設計了一個在 x = 0 這個點極限不存在的函數(例如設定這個函數在 x 小於 0 時其函數值均為 0;而當 x 大於 0 時其函數值均為 1),那麼要如何改造或調整這個函數,才有辦法讓這個函數在 x = 0 的「旁邊」的點其極限也不存在呢?針對這個例子而言,或許可以這樣做:先將這個函數在 x 大於 1 以後的函數值改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 1 的時候極限都不存在,但因為 1 並非 0「旁邊」的數字,所以顯然還要再調整,於是我們再將 x 大於 0.5 以後的函數值都改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 0.5 處其極限不存在,但同樣地,因為 0.5 並非 0「旁邊」的數字,所以我們繼續調整這個函數,下一步當然是將 x 大於 0.25 以後的函數值都改成 0.5,依此類推,再下一步就是將 x 大於 0.125 以後的函數值都改成 0.5,持續這樣的步驟,最終我們會得到一個當 x 小於 0 時其函數值為 0 而當 x 大於 0 其函數值為 0.5 的函數。這個函數當然仍然在 x = 0 的時候其極限不存在,但是原本在調整時的兩點極限不存在,卻因無限持續這樣的步驟,而變回了僅在 x = 0 極限不存在的狀態。這結果實在令人沮喪。
    .
      之所以會產生這樣的狀況,是因為持續了無限次將新增的極限不存在的點向 x = 0 處靠近的緣故。既然如此,那如果不要持續上面的步驟無限次呢?如果僅持續有限次的步驟,那麼在該次步驟的下一次,一定可以把 x = 0 右邊新增的極限不存在的點向 x = 0 再靠近一些,這個推論的結果就是,如果僅持續有限次上述的步驟,那麼就無法達成創造一個在 x = 0 的「旁邊」的極限不存在的點。結果,無論是有限次或無限次操作上述的步驟,最終都無法達成我們的目標。這真的真的非常令人沮喪,因為這意味著從一個點的極限不存在出發,去逐步改造出一個處處極限不存在的函數,方向很可能是錯誤的。
    .
      那麼,該怎麼辦呢?
    .
      面對這個問題,當時的我最終並沒有自己解出來,而是一個比過奧數的朋友在老師公布答案之前成功地解了出來,並告訴我他的想法。
    .
      他告訴我,既然從一個點的極限不存在開始是行不通的,那就一次就創造一大堆極限不存在的點吧!例如一開始的函數乾脆設定成這樣:當 x 介在 n 和 n + 1 之間且 n 為偶數時,將其函數值設定為 0,而其他地方則設定為 1。例如,當 x 介在 0 和 1 之間或介在 2 和 3 之間時,其函數值就是 0,而當 x 介在 1 和 2 之間或介在 99 和 100 之間時,其函數值就是 1。如此一來,我們就獲得了一個在每一個整數點其極限都不存在的函數。
    .
      以此為起點,比起我想的那個例子最初的樣子一次新增了無限多個極限不存在的點,似乎好像有了長遠的進步,但到此階段實際上並沒有解決我最一開始講的問題的癥結點,那就是如何在一個極限不存在的點的「旁邊」創造一個極限也不存在的點。
    .
      為了解決這個問題,我的朋友告訴我,下一步是在每一個「區間」裡進行調整。用例子來說明而剩下類推的話,大概是這樣操作:例如,在 0 和 1 之間,函數值原本都是 0,但接下來把這個區間切割成 10 等分,然後第 1、3、5、7、9 個區間(也就是在 x 介在 0 和 0.1、介在 0.2 和 0.3、介在 0.4 和 0.5、介在 0.6 和 0.7、介在 0.8 和 0.9 之間的這幾個區間),我們把函數值調整成 1,其餘的不動,那麼我們就可以得到一個,除了在所有整數點極限都不存在的函數以外,這個函數在 0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9 的極限也不存在。那如果是在原本函數值為 1 的區間,則在等分割成 10 個區間以後,將第 2、4、6、8、10 個區間的函數值調整成 0。若將上面這些動複製到其他區間的話,那麼在每一個整數區間(就是 n 到 n + 1 的區間)裡面,其十分位數的位置其極限都不存在。
    .
      接下來,再將函數值為 1 的區間等分割為 10 個區間,然後第 2、4、6、8、10 個區間其函數值都調整成 0,而函數值為 0 的區間一樣等分割為 10 個區間,但是是將第 1、3、5、7、9 個區間的函數值調整成 1,那麼,這個函數就變成了一個除了在所有整數點極限都不存在以外,但在每一個整數區間裡面其百分位數的位置極限都不存在的函數。
    .
      再接下來,繼續進行上面的動作,不斷地十等分分割之前產生的區間,並且適當地調整其函數值,使其在任一階段裡面都是前一個區間裡面的函數值是 0 且後一個區間裡面的函數值是 1 ,或前一個區間的函數值是 1 而後一個區間裡的函數值是 0 的狀態,持續無限次,最終就會得到一個在任一點其極限值都不存在的函數了。
    .
      要證明這個函數處處極限不存在有分簡單版和嚴格版,這邊我們先講簡單版,以後有機會再談嚴格版。對於這個函數而言,固定任何一點 a,其左極限只有兩種可能,0 或 1,但因為這個函數被分割地非常地密,而且連續幾個區間在任一階段裡面都是一下子 0 一下子 1 這樣變動,所以這個函數在 a 點的左極限不存在,因此這個函數在 a 點的極限並不存在。最後,因為 a 這個點是任意取的,所以我們可以說這個函數的極限值在任意點都不存在。
    .
      這個答案真的很猛,因為當時在班上只有我那位奧數的朋友給出了教授點頭的答案。
    .
      雖然當初他並沒有辦法清楚地講出左極限不存在的原因,也因為我們還沒學到極限的嚴格定義,所以沒辦法用嚴謹的敘述來證明這樣的函數確實處處極限不存在,但現在回想起來,那位奧數朋友還是很猛!因為他就好像那種天生的小說家一樣,信手拈來就寫出了一本傑出的小說,而我們凡人卻連寫一篇普通的文章都很成問題。
    .
      講到這裡,今天的故事似乎已經講完,但其實還沒,因為這樣聰明的人,並不會只出現我們班上甚至是這個時代而已。
    .
      關於「是否存在一個處處極限都不存在的函數」這個問題,其實在 19 世紀時,就有一位叫做 Dirichlet 的德國數學家,他所創造出來的一種函數(後來稱為 Dirichlet 函數),就是處處極限不存在的函數。這個函數的定義如下:當 x 為有理數時,其函數值是 1;當 x 不為有理數時,其函數值是 0。這樣的函數確實也處處極限不存在,也是我教授當時給同學們預設的答案。
    .
      在這邊我就不文字解釋為何 Dirichlet 函數處處極限不存在了,但我有拍一部影片來說明,如果你想繼續看下去,可以點開我貼在本篇文章留言處的這部影片,我有盡量簡單地解釋為何 Dirichlet 函數處處極限不存在。
    .
      雖然 Dirichlet 函數處處極限不存在,但其實當初 Dirichlet 所面對的問題,並非「是否存在處處極限不存在的函數」,而是「是否存在無法圖像化的函數」。在經過可能類似這篇文章最一開始的那些推敲以後,Dirichlet 創造了 Dirichlet 函數,而這個 Dirichlet 函數就是一個「客觀存在」但「無法圖像化」的函數。並且,除了無法圖像化以外,Dirichlet 函數在數學上也有著很重要的地位,因為他常常是一些直覺上無法察覺的現象的重要例子。例如我們直覺上都會認為只要函數有週期,那麼就會存在最小週期,但 Dirichlet 函數就是一個不具有最小週期的週期函數,因為任意有理數都是它的週期。
    .
      關於 Dirichlet 函數的性質我們就講到這邊,或許以後有機會可以專門寫一篇跟 Dirichlet 函數有關的文章,不過有很多性質都是需要具備更多數學知識以後才能介紹的,所以如果真的要寫的話,那可能就還要再等一陣子了。
    .
      最後,跟大家介紹一下我上面所提到的影片,那是我在 2020 年時所拍攝的一系列微積分教學影片的其中一集。該系列影片基本上有觀念講解、精選範例和補充教材,近期我會開始陸續上傳到這裡,但不是每一部影片都會寫文章來搭配,所以如果你想跟著我上傳的速度一部一部看,而且不漏掉系列裡每一部影片的話,可以關注我在西瓜視頻、騰訊視頻和優酷視頻的頻道;如果你想一次看完我全系列的影片的話,可以關注我在 YouTube、bilibili 或 Pornhub 上的頻道,上面已經上傳了張旭微積分全系列影片。另外這系列影片都有講義電子檔可以搭配使用,如果你想要取得該電子檔的話,請幫我按讚這篇文章和這個粉專、分享這篇文章,並幫我到我的臉書粉專評論處寫個評論,然後私訊我的臉書粉專,我的夥伴就會回覆你講義電子檔的連結。
    .
      感謝你的觀看,希望這篇文章對你有所幫助,有任何問題或想法也歡迎在下面留言告訴我。另外,本文章同步發佈於數學老師張旭的 YouTube 頻道社群、微博、今日頭條、Medium 和 HackMD,若你也有上面提到的那些帳號,歡迎按讚、分享和關注!

  • 微積分偶數題答案 在 數學老師張旭 Facebook 的最佳解答

    2020-04-12 23:46:50
    有 5 人按讚

    各位晚安
     
    今天來跟大家分享一下丈哥講解習題的部分
    這次的習題是極限篇主題三的習題
     
    當初在證明一些基本函數的極限時
    我並沒有設計什麼範例
    在這樣的情況下
    我原本以為丈哥會跳過這一個主題不設計習題
    結果他還是做了
     
    看了一下丈哥設計的習題
    覺得還不錯
    基本上把這一個主題的習題的空間拿來繼續練習極限的嚴格定義
    也是不錯
     
    如果你是理學院的學生或對數學有興趣
    那千萬不要錯過這些更進階的極限證明習題!
     
    習題下載:https://mega.nz/file/5YtjiQwb#LLeZoYQ35phizo-IOfCWSbTNdSHG-oq7EJiU4l1NPwo
    歡迎同學看完影片以後下載習題練習
    寫完以後可以到張旭老師微積分討論群的單元區找簡答
    連結:https://www.facebook.com/groups/changhsu.math.calculus/learning_content
    對完答案以後如果有問題的話
    偶數題可以先看看丈哥拍攝的講解影片
    如果看完以後還有問題的話可以再到討論群提問
    奇數題如果需要的話,也可直接到討論群提問
    討論群:https://www.facebook.com/groups/changhsu.math.calculus
     
    ● 更多影片請到張旭老師 YT 頻道:數學老師張旭
    ● 頻道連結:https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g
    ● 各科完整學習地圖:http://tinyurl.com/ratrhxg

  • 微積分偶數題答案 在 數學老師張旭 Facebook 的最讚貼文

    2020-03-29 03:09:03
    有 8 人按讚

    各位晚安
     
    最近我的團隊蠻用力拍片的
    因為我真的很希望把以前老是掛在嘴巴上的計畫完成
     
    感謝丈哥陪我一起瘋狂拍片
    希望我們的努力真的能夠幫助到需要的同學們

    這次分享給大家的是極限嚴格定義證明的練習題的講解影片
    是蠻硬的一個主題
    但又是大一微積分第一次段考很可能會考的部分
    所以如果擔心到時不知道怎麼寫才好的話
    就來看看我們的教學影片吧!
     
    這次一樣有習題下載:https://mega.nz/#!4cVD1C6I!41hIRjtQFPuyHmOiz9s39FuQN7cbaIWYWmZ1xl7Z8go
    偶數題一樣有丈哥講解 (點下圖可進播放清單)
    如果寫完想對答案的話一樣可以到 數學老師張旭:微積分討論區 的單元區下載簡答
    如果有問題的話一樣也可以在討論區裡面提出來一起討論
     
    如果覺得我們的頻道不錯的話
    歡迎按讚、訂閱和分享給更多需要的同學們
    這樣不但可以幫助到他們也能幫助到我們
     
    大概如此
    謝謝各位
    晚安

你可能也想看看

搜尋相關網站