為什麼這篇平行四邊形面積向量鄉民發文收入到精華區:因為在平行四邊形面積向量這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者herstein (翔爸)看板Math標題Re: [線代] 台大100線代 4.6.時間Sat ...
平行四邊形面積向量 在 Hi, I’m Chin. Instagram 的精選貼文
2021-08-02 19:04:41
🌸🌸🌸🌸🌸🌸 數學就是真理! 照片上的筆記:「向量a外積向量b的長度為向量a與向量b所張開之平行四邊形面積」 我沒有表示清楚!不好意思 #110學測 #chin的讀書紀錄...
面積=底乘高,體積=長乘寬乘高,n維區間體積=邊長相乘。這裡的立方體要求是相鄰
兩邊兩兩相互垂直。如果你給一個線性獨立集合{v_1,...,v_n},你希望計算由此集合
張成的平行多面體體積,最簡單的想法就是透過Gram-Schmidt過程,求出直交的長寬高
然後體積就是所有的邊長乘起來的値。
當n=2時,你得到的是高中所學得向量面積公式:A^2= |u|^2|v^2|-(u.v)^2。
推導的方式:(此時A表示為由u,v向量所張成的平行四邊形面積)
求出u在v方向上的投影P(u),則u-P(u)便垂直於v,並且
u = (u-P(u))+P(u),
其中P(u)=[(u.v)/(v.v)]v, 於是平行四邊型面積為底乘高 =|v||u-P(u)|。
如果把|u-P(u)||v|算出來,就是(|u|^2|v^2|-(u.v)^2)^{1/2}。
其實你也可以用行列式把此值表達出來:
A^2= |u.u u.v| =習慣上記為Γ(u,v)
|v.u v.v|
如果你把u=(u_1,u_2,...,u_m), v=(v_1,...,v_m),
令G表示m*2矩陣 G=[u v], 其中我們把u,v視為行向量,
那麼
Γ(u,v) = det(G'G).
同理,你可以把這樣的想法推廣n維平行多面體的體積。
假設{f_1,...,f_n}是內積空間中的一個線性獨立集合,
Γ(f_1,...,f_n)=det (<f_i,f_j>)
那麼在此內積空間中,由{f_1,...,f_n}所形成的n維平行多面體體積為
(Γ(f_1,...,f_n))^{1/2}
這個行列式很有名,就叫做Gram-determinant。
如果f_i是R^k中的向量,那麼令G表示一個k*n矩陣,其中M的的i個行向量是f_i,
那麼Γ(f_1,...,f_n)又可以寫成
Γ(f_1,...,f_n)=det(G'G).
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 88.77.138.154
※ 編輯: herstein 來自: 88.77.138.154 (02/04 09:31)
與其說外積,不如說wedge product,這應該是更正確的說法。
如果你懂一點微分幾何,假設X:S-> R^k是R^k中的m維曲面,你希望計算這個曲面在R^k
中的體積,那麼你就是求出X的一次微分dX,這個矩陣的行向量就是上面的f_j,
那麼det(dX'dX)就是給你(開根號之後),在局部上,這個曲面的切向量所構成的平行多
面體體積。