[爆卦]如何壓縮影片檔案到最小是什麼?優點缺點精華區懶人包

雖然這篇如何壓縮影片檔案到最小鄉民發文沒有被收入到精華區:在如何壓縮影片檔案到最小這個話題中,我們另外找到其它相關的精選爆讚文章

在 如何壓縮影片檔案到最小產品中有8篇Facebook貼文,粉絲數超過6,574的網紅兒物,也在其Facebook貼文中提到, 生日祝福│兒物X薰鮭魚 週四專欄 ep55 從豬寶三個月大時與兒物結緣,默默地,他已經過了兩歲生日。回頭想想,在孩子成長過程中經過的這些沒那麼親密卻始終保持聯繫的友人、買到變朋友的網拍賣家、IG上專門刷愛心的網友等,是好神奇又珍貴的存在。 練習當一個上手的媽媽,是條有點寂寞的路,少了很多與人實際...

 同時也有2部Youtube影片,追蹤數超過19萬的網紅分享家-羽,也在其Youtube影片中提到,大家都知道買電腦要買有SSD的,速度才會快!但你知道其實SSD還有分好幾種嗎?你知道如果買了沒SSD的電腦到底會有多慢嗎?不要跟自己過不去!來看完這個測試,你就知道為什麼一定要買SSD以及你該買哪一種的SSD! 980 PRO 賣場資訊 PChome 24h購物:https://reurl.cc/...

如何壓縮影片檔案到最小 在 兒物 Instagram 的精選貼文

2021-08-18 11:20:23

生日祝福│兒物X薰鮭魚 週四專欄 ep55 從豬寶三個月大時與兒物結緣,默默地,他已經過了兩歲生日。回頭想想,在孩子成長過程中經過的這些沒那麼親密卻始終保持聯繫的友人、買到變朋友的網拍賣家、IG上專門刷愛心的網友等,是好神奇又珍貴的存在。 練習當一個上手的媽媽,是條有點寂寞的路,少了很多與...

  • 如何壓縮影片檔案到最小 在 兒物 Facebook 的精選貼文

    2021-07-29 20:30:54
    有 26 人按讚

    生日祝福│兒物X薰鮭魚 週四專欄 ep55

    從豬寶三個月大時與兒物結緣,默默地,他已經過了兩歲生日。回頭想想,在孩子成長過程中經過的這些沒那麼親密卻始終保持聯繫的友人、買到變朋友的網拍賣家、IG上專門刷愛心的網友等,是好神奇又珍貴的存在。

    練習當一個上手的媽媽,是條有點寂寞的路,少了很多與人實際接觸的時間,少了很多自由和樂趣,都是這些沒有負擔的關係伴著。滑滑圖片、看看近況,甚至是很積極的取暖方式──花錢發洩──一路見證彼此的茁壯,想起總是心頭一陣暖。

    孩子的成長就像支縮時影片,記憶裡的那些畫面真的發生過,只是成為被壓縮的檔案,一幕幕快速閃現腦海。第一次見到他的融化感、逗笑他時的成就感、他第一次搖搖晃晃走向我的鼻酸感、摟在懷裡餵奶到打盹的日常,都還像是昨天。好開心他健康長大,卻也真的、真的好捨不得那個小小的他,捨不得生命誕生的悸動。

    以前看《屍速列車》,孔劉變成喪屍前的最後一個記憶是女兒剛出生、交到他手裡那幕,嚇個半死看到這幕卻必哭,有小孩後秒懂為什麼,因為那瞬間是永遠不會忘記的,是個無暇、神聖的永恆。也許就像做一件事的初衷吧!你眼前這個小生命,就是支持你的原動力之一。

    這兩年來,不少人好像覺得我育兒育得挺輕鬆、豬寶似乎很好帶。其實,只是報喜不報憂,加上孩子確實給我很強大的信念,說穿了,就是我成為一個母愛3.0的女人罷了。一直覺得,確實有挑戰性較高的小孩,但也真的有耐心不夠多的家長,這沒有不好或對錯,只是自我必須認清,再繼續去磨合相處方式,或跟家人討論解決辦法,不用感到愧咎,更不要怪罪小孩。

    有豬寶以來,我感受最深的一件事就是,能充滿祝福地活著,真的很幸福,幸福會向外渲染,周遭的人都會因此變得快樂,環境會變得很簡單。希望他能帶著滿滿的愛長大,成為一個懂得給予祝福的人。

    對了,在這之前,你得敞開心胸無彆扭地接受他人的祝福。我發現,這點其實不容易,有時我會對於拿禮物感到不好意思,或邪惡地去揣度利益,逐漸明瞭重點在於欣然接受他人的心意之後,如何讓對方「舒服地」感受到你的珍惜,及如何延續這份心意,如此一來,雙方都會踏實而富足。

    接著,當一個能夠自我祝福的人。這就無需多說了,如果連你都不祝福自己,你、你的家庭和孩子又怎有幸福的機會呢?趁著豬寶兩歲生日,以他的名義祝所有孩子都能單純、開心、健康地成長,所有家長都能找到自己的平衡,儘管生活很費力,依舊能順心。

    官網版全文:https://www.er-taiwan.com/blog/posts/%E5%85%92%E7%89%A9%EF%BD%98%E8%96%B0%E9%AE%AD%E9%AD%9A-ep55-%E7%94%9F%E6%97%A5%E7%A5%9D%E7%A6%8F

    撰文、攝影:薰鮭魚
    薰鮭魚│斜槓到不行的地方媽媽,育有一兒豬寶。正職網路媒體總編輯,兼差各類文字工作,偶爾韓貨連線,夢想開奶茶廳。專業是文字,專長是把小孩養得很大;例如身高PR97的豬寶,和家裡那隻體重上看16公斤的肥貓。生活有時很像鬧劇,可能老公太像諧星, 薰鮭魚的採訪手記、豬寶的IG: zubaobaoyuan,歡迎光臨。

  • 如何壓縮影片檔案到最小 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2021-03-08 18:09:20
    有 1 人按讚

    迎接終端AI新時代:讓運算更靠近資料所在

    作者 : Andrew Brown,Strategy Analytics
    2021-03-03

    資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。

    這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。

    資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。

    對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。

    與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。

    資料正在帶動從集中化到分散化的轉變

    隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。

    智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。

    從邊緣到終端:AI與ML改變終端典範

    在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。

    在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。

    終端AI:感測、推論與行動

    在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。

    處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。

    感測

    處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。

    它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。

    推論

    終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。

    例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。

    行動

    資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。

    終端 AI:千里之行始於足下

    從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。

    這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。

    隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。

    TinyML、MCU與人工智慧

    根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」

    微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。

    物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。

    受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。

    儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。

    如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。

    AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。

    終端智慧對「3V」至關重要

    多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。

    Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。

    如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:

    震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
    視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
    語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
    垂直市場中有多種可以實作AI技術的使用場景:

    震動

    可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:

    溫度監控;
    壓力監控;
    溼度監控;
    物理動作,包括滑倒與跌倒偵測;
    物質檢測(漏水、瓦斯漏氣等) ;
    磁通量(如鄰近感測器與流量監控) ;
    感測器融合(見圖7);
    電場變化。

    一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。

    語音

    語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。

    在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。

    語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。

    對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。

    視覺

    正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。

    曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。

    使用場景

    預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。

    震動分析

    這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。

    磁感測器融合

    磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。

    聲學分析(聲音)

    與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。

    聲學分析(超音波)

    聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。

    熱顯影

    熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。

    消費者與智慧家庭

    將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。

    消費者基於各種理由使用智慧音箱,最常見的使用場景為:

    聽音樂;
    控制如照明等智慧家庭裝置;
    取得新聞與天氣預報的更新;
    建立購物與待辦事項清單。

    除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。

    終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。

    健康照護

    用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。

    其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。

    結論

    由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。

    解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。

    儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。

    終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。

    附圖:圖1:從集中式到分散式運算的轉變。
    (資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
    圖2:全球上網裝置安裝量。
    (資料來源:Strategy Analytics)
    圖3:深度學習流程。
    圖4:MCU的視覺、震動與語音。
    (資料來源:意法半導體)
    圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
    (資料來源:意法半導體)
    圖6:物聯網企業對企業應用的使用-目前與未來。
    (資料來源:Strategy Analytics)
    圖7:促成情境感知的感測器融合。
    (資料來源:恩智浦半導體)

    資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI

  • 如何壓縮影片檔案到最小 在 倒立先生Mr. Candle Facebook 的最佳解答

    2020-08-28 01:54:40
    有 2 人按讚

    如果報復性旅行感覺玩透台灣了,要不要聽聽倒立先生雜技式演講,挑戰一下自己對台灣的認識!
    email: [email protected]
    為演講所有4K影像調光色,好像回到小時候畫畫的快樂時光,小時候畫畫完老師、爸媽都會幫我拿去比賽,常常無緣無故都會上台領獎卻不太知道是哪個畫畫比賽。
    4K影像真的很美,除了訊息量、色彩之外,就是有跟HD影像很不同的空間感,可惜現在我用的電腦無法在演講時呈現100%的效果僅能呈現約60%效果(因為硬碟容量太小。要能接近100%呈現效果的話,4K演講簡報檔案大約要8Tb的SSD硬碟容量才能應付1.5Tb的簡報檔案,但我現在電腦只有1Tb的ssd硬碟容量(乘以5倍的處理儲存空間,見圖中的「其他」),現在裝150G的極壓縮簡報檔案已經是非常非常吃力,哎,只能盡力,雖僅能呈現大約60%的效果,但跟沒有調過光的檔案比起來,已經是效果好上幾倍了:)現在是創業11年來,演講投影效果最棒的階段:)即便困難重重,都要努力完成,才不負各地熱血教師的演講邀約!
    有看過4K投影機放大投射的效果嗎?有看過4K台灣嗎?
    快快邀請倒立先生的雜技式演講:)
    email: [email protected]
    倒立先生自備投影機:NEC1005QL(4K解析度+1萬流明雷射光源)

    將11年來記錄到的台灣整理出來,演講內容暴增,在長輩的建議下,現在倒立先生的演講可以自選菜單喔:
    可邀約長度:1-150分鐘
    想邀請演講時間長度:
    __1-30分鐘,__45分鐘,__60分鐘,__90分鐘,__120分鐘,__150分鐘
    想要欣賞的內容:
    �__1 示範雜技表演分享找到天賦、夢想的經驗(約20分鐘)
    �__2 4K投影-倒立看台灣之古老大地、動植物、信仰空間、傳統建築、族群(約30分鐘)
    __3 4K投影-倒立看台灣之農漁業、現代建築(約25分鐘)�
    __4 4K投影-倒立看台灣之城市生存、傳統生活與山海教室(約25分鐘)�
    __5 白手創業故事分享-雜技哲學:沒有不可能,只要我願意(約20分鐘)
    __6 答客問(約10-30分鐘)

    演講三大內容:實現金臺灣三金礦-
    #金礦一,傳統雜技表演+當代雜技討論如何找到自己的天賦與夢想?並分享校園演講近700場後,臺灣校園教 改實況
    #金礦二,當代雜技跨界紀實電影呈現10年40萬公里倒立紀錄臺灣的全部影像(已紀錄台灣 33%面積,需要靠演講賺67%的拍攝經費):臺灣部分民族神聖空間、部分古老動植物、約300座寺廟教堂、 部分建築物、100多個節慶祭儀、部分鄉鎮城市樣貌、部分城市生活、部分農業、許多漁業技法(含遠洋美式 鰹鮪圍網)、部分高山景象、部分海洋海景,以及相對應的破壞與污染,邀您開始深度瞭解臺灣之旅。
    #金礦三,雜技哲學-「沒有不可能,只要我願意」如何運用來經營夢想、白手創業
    為何天賦與夢想是臺灣最重要的寶藏?臺灣要轉型,為何不見顯著成效?
    如果我的生活都被現實佔據了,還有機會追夢嗎?
    如何找到自己適合的現實與夢想的完美比例?
    怎麼用夢想、興趣創業?
    別人的聲音比較重要,還是自己的夢想比較重要?
    實現夢想路上,對於親人親友的拉扯,該怎麼處理?
    冒險的好處?
    無法被取代的原創性如何產生?
    怎麼度過低潮、懷疑?
    家長該如何看待小孩夢想與興趣?
    怎麼做才能了解年輕人對夢想與興趣的態度? 如何用自己、臺灣的獨特文化,結合自己的天賦與夢想一步一步經營自己、人生、事業?
    臺灣為何進步緩慢?誰創造臺灣生鏽?

    圖說:
    *4K影像的「空間感」很不一樣
    *電腦很慢(但已經是筆電的頂級規格了!),調光後90個1分鐘的4K影片要算圖19個小時,電腦也都無法做其他事情了
    *自製投影幕在最後加工
    *電腦都被4K影像處理的「其他」塞滿了,也刪不掉...
    *電腦不夠快,一直在轉彩虹圈圈

  • 如何壓縮影片檔案到最小 在 分享家-羽 Youtube 的最佳解答

    2021-09-11 17:00:10

    大家都知道買電腦要買有SSD的,速度才會快!但你知道其實SSD還有分好幾種嗎?你知道如果買了沒SSD的電腦到底會有多慢嗎?不要跟自己過不去!來看完這個測試,你就知道為什麼一定要買SSD以及你該買哪一種的SSD!

    980 PRO 賣場資訊
    PChome 24h購物:https://reurl.cc/ZjO43M
    MOMO購物網:https://reurl.cc/r1xEq4
    Yahoo購物中心:https://reurl.cc/Ok1Yl9

    980 賣場資訊
    PChome 24h購物:https://reurl.cc/GbVnW3
    MOMO購物網: https://reurl.cc/mvnxaY
    Yahoo購物中心: https://reurl.cc/jg79xL

    🔸CC字幕的開啟方式:https://youtu.be/k65E3bjUPbs
    🔸關於留言你該知道的事:https://youtu.be/TVZWf6Xopuo
    🔸歡迎加入羽的Telegram頻道以免漏掉上片通知:https://youtu.be/ocK4if42N8I

    🆒加入分享家-羽的頻道會員:https://reurl.cc/dGKy7V
    🆒分享家-羽頻道會員福利說明影片:https://youtu.be/A5VIBDbzPm8

    👉前往分享家-羽的副頻道【日常廢片】https://tinyurl.com/yulenvlog
    👉前往分享家-羽的粉專 https://www.facebook.com/HappySharerYu/
    ======================================================
    其他分享家-羽的影片系列:
    💡知識技巧與軟體分享系列
    分享3C或生活中實用的知識、技巧與經驗,也會有一些好用的軟體推薦分享等等。
    https://tinyurl.com/sg3w25o

    🔎開箱評測、使用心得、產品介紹、選購指南系列
    分享各種商品的開箱、評測、介紹、使用心得與選購指南等影片。
    https://tinyurl.com/tqjpv75

    🚗旅遊與食記系列
    分享旅遊或食記相關Vlog以及旅遊相關的知識、技巧或資訊等等。
    https://tinyurl.com/rtpc4a3

    📢就是要分享系列
    分享我覺得有價值但又不知道如何歸類的影片。
    https://tinyurl.com/rp3h47r

    🏨羽的住宿經驗系列
    分享各種自己住過的飯店、旅社、民宿等等。
    https://tinyurl.com/uto3ngh

    📜全部播放清單列表
    其他沒有列出來的清單都在這邊!
    https://tinyurl.com/s8rmtk8
    ======================================================
    ✉合作邀約請洽粉專或來信 singiamagic@gmail.com

    時間軸:
    00:00 SSD還有分類
    00:55 三星 980 Pro 1TB 介紹
    01:16 三星 980 1TB 介紹
    01:51 三星SSD散熱設計與特色
    03:26 軟體測速
    04:32 系統安裝耗時測試
    04:50 開機速度耗時測試
    05:03 檔案複製耗時測試
    05:30 解壓縮耗時測試
    05:48 零碎小檔案複製耗時測試
    06:10 大型檔案加載耗時測試
    06:42 開啟遊戲耗時測試
    07:04 選購心得分享

    #三星 #SSD #980

  • 如何壓縮影片檔案到最小 在 陳寗 NingSelect Youtube 的最佳解答

    2021-06-27 18:00:22

    NOW! 成為陳寗頻道會員並收看獎勵影片:https://lihi1.com/ZT8bZ
    頻道會員經費用於製作字幕及剪接,懇請支持頻道營運!
    ──────
    陳寗嚴選 iPad Pro/iPhone 保貼 & 充電頭:https://lihi1.cc/VnHIF
    陳寗嚴選兩聲道音響:https://lihi1.com/2ecL7
    陳寗嚴選抗菌靜電濾網/防潑水抗菌強化膜:https://lihi1.cc/x7Sse
    陳寗嚴選 NAS 團購:https://lihi1.com/SuL4Q
    ──────

    00:00 本集重點:哪個好聽?幫你比較 CD、串流與 Hi-Res
    00:57 玩音響一定要懂:什麼是取樣率、位元深度?
    01:42 「取樣率」是什麼?96khz↑才能稱為 Hi-Res?
    04:18 「取樣率(hz)」的定義:每秒對聲波波型取樣的次數
    05:37 同母帶用越高取樣率,越接近真實
    06:10 「位元深度(bit)」的定義:記錄聲音響度變化的能力
    07:00 電腦如何知道音量多大?位元深度越深,響度變化越細緻
    08:33 為何 CD 格式是 44.1khz/16bits?
    09:42 440hz 是當代標準音高,但巴洛克時期 432hz 才是標準
    10:22 取樣率只是影響音質的因素之ㄧ!檔案流量常被大家忽略了
    11:19 96khz 未必比 44.1khz 好?取樣率高≠沒壓縮,這是兩回事
    11:54 也要小心虛假的高解析!很多錄音是用 48khz 錄製,再升頻
    13:09 重要觀念:關鍵是高取樣率音檔的產製過程
    13:53 不是晶片格式好,就會好聽!取樣率只是影響音質的環節之一
    15:37 我用 CD 轉檔 VS Mora 買的 Hi-Res?CD 轉的低頻多,Mora 的細節多
    16:40 如果你有 Bi-Wire 的喇叭…把高音拔掉聽,低音比較清楚
    17:54 Tidal/Qobuz 不適合做比較!要用 Mora 檔案和 CD 轉檔比

    #取樣率 #數位流 #位元深度

    ──────
    陳寗實話說 Podcast 試營運上線:
    Apple Podcast:https://lihi1.com/xXnHu
    Google Podcast:https://lihi1.com/yfDKF
    其餘各大 Podcast 平台也都有上線,請直接搜尋「陳寗實話說」!
    ──────

    本頻道每晚 6 點鐘上新片,還有幾個原則跟你約定好:

    1. 開箱零業配:
    真實使用過後才發表心得,通常試用至少 1 個月,所以你通常不會看到我最早發表,但哥真性情的評論,保證值得你的等待。

    2. 理性討論:
    我有自己的偏好,你也有自己的好惡,我們互相尊重,時時用大腦,刻刻存善念,不謾罵,不矯情。可以辯論,不可以沒邏輯。

    3. 我團購我驕傲:
    我很愛買東西,也很愛比較產品,我自己使用過、多方比較過,還是覺得喜歡的東西,我才會辦團購。(簡單說就是挑品很嚴格,至今 80% 廠商找上門都被我打槍。)辦團購我一定有賺,但我跟廠商拿到提供給你的團購價,也會讓你一定有划算感。所以如果你品味跟我相近,或是剛好有需要,就跟我團購,我們互惠。如果你覺得跟我團購,你就是我乾爹,說話不懂得互相尊重,那就慢走不送,你可以去找一般店家買貴一點。

    看了以上,覺得可以接受就請你訂閱,訂閱順便開鈴鐺。我們每天晚上 6 點見。

    我的網站連結在這:https://ningselect.com/
    也別忘了幫我的 FB 粉絲專頁按讚:http://bit.ly/ningfb

    如果有任何問題,包括團購等問題,都可以在影片下方留言問我,同一支影片下很多人都想知道的問題會優先用留言回答,如果是比較大的題目,則有機會拍成 QA 影片回答~如果你想問的是針對個人的音響選購、配置問題,可以直接傳 Line 問我:http://bit.ly/ningline

    另外團購商品請參考我的商城:https://shop.ningselect.com/
    廠商合作請先了解相關原則:http://bit.ly/coopning

你可能也想看看

搜尋相關網站