雖然這篇勞動力發展數位服務平臺鄉民發文沒有被收入到精華區:在勞動力發展數位服務平臺這個話題中,我們另外找到其它相關的精選爆讚文章
在 勞動力發展數位服務平臺產品中有4篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, 創新工場和BCG波士頓諮詢合作的「+AI改造者」系列:創新工場投資的追一科技,用領先的「數位員工」解決方案幫傳統企業降本提效。 改造者系列:傳統企業應用AI別想「短平快」 -- 本文来自BCG微信公眾號,經授權轉載。 近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者...
勞動力發展數位服務平臺 在 Facebook 的最讚貼文
創新工場和BCG波士頓諮詢合作的「+AI改造者」系列:創新工場投資的追一科技,用領先的「數位員工」解決方案幫傳統企業降本提效。
改造者系列:傳統企業應用AI別想「短平快」 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
隨著當前人口紅利趨弱,企業的用工成本增加,「數位員工」存在大量的市場需求。成立於2016年的追一科技,通過其核心的AI語義分析技術,幫助傳統企業利用人工智慧技術解決勞動力短缺的問題,實現降本提效。
在采訪中,追一科技首席戰略官成捷認為,傳統企業應該扭轉AI應用「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,以達到正向的循環。
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在企業服務領域,AI企業,即「改造者」,能夠最直接地賦能企業提升管理效率與節降成本。追一科技便是這一賽道的佼佼者之一,借助自然語言處理技術,其「AI數位員工」可以勝任線上客服專員、行銷專員、資料質檢員、銷售上崗培訓師、反洗錢專家等崗位。
■本期受訪嘉賓:成捷
追一科技是「AI數位員工」提供商,主攻深度學習和自然語言處理,提供智慧語義、語音和視覺的AI全棧服務。追一科技的AI數位員工智慧平臺與業務場景深度融合,提供不同類型的AI數位員工,滿足企業和政府使用者服務、行銷、運營、 辦公等多種場景的智慧化升級需求,幫助他們降本提效,改善用戶體驗,驅動創新和增長。
成捷是追一科技首席戰略官。在此之前,他曾任職于麥肯錫與騰訊。成捷先生擁有清華大學學士學位與加州理工大學博士學位。
■對談實錄
Q1:追一科技為何選擇幫助傳統企業應用AI?
成博士:追一科技的定位是「AI數位員工」服務商,本質上是智慧軟件,面向企業提供AI企業軟件來説明其降本增效。當前,隨著人口紅利趨弱,企業用工成本水漲船高,員工的流動性也在增加,市場上存在大量對於智慧客服、行銷、內部溝通等的需求,企業希望由機器解決勞動力短缺問題,並為企業降本。而追一的核心AI能力是語義分析,即機器如何像真人一樣理解和表達文本資訊,再結合創始人團隊的企業服務背景,恰好能夠滿足我們稱之為「數字員工」的市場需求。追一的語音、視頻應用能夠滿足銀行、運營商等企業線上交互管道上海量的對話交互需求,涉及行銷和業務辦理等,幾乎等同于傳統呼叫中心上千乃至上萬的人工。
同時,我們也看到近些年大量企業在推進資訊化建設、雲建設,企業數位化的基礎在不斷成熟。許多企業已經積累了大量結構化或非結構化的資料,但並不知道如何應用,不知道如何從海量資料中提煉洞察。追一可以説明他們通過資料分析來實現更精細化的運營,從而提升人的產能。以保險電銷為例,通過對銷售人員的資料分析,追一能夠提煉高績效員工值得借鑒的話術和知識點,標準化後以輔助推廣培訓。
Q2:在賦能傳統企業應用AI的過程中,追一遇到過哪些挑戰?又是如何應對的?
成博士:AI火爆之後,大部分企業的心態是先投資一部分進行嘗試,其中有些企業成功地體驗到了AI的成效,於是自發地持續梳理其業務流程、構建並優化知識庫,進入了一個正向循環,投入產出比也合理,逐漸能夠覆蓋到更多場景和業務部門。
而有些企業原本對AI的預期是「隨插即用」,期待AI能在短期之內帶來巨大改變,他們應用AI的效果往往就無法達到預期,也很難將AI的效用發揮到最大,往往在一次采購之後就沒有下文了。AI企業要扭轉傳統企業認為AI「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,才能步入正向的循環。
其次,許多較早開始應用AI的企業組織規模都很大,涉及到很多不同的部門——分條線、分版塊、分職能等。如何能夠協調大型企業多部門之間不同的利益和訴求,這對於AI應用而言是另一大難點。以銀行為例,總行負責智慧化建設的IT或科技部門往往考慮更有整體性的、大量部門可以通用的、長期的解決方案,且看中綜合性和可持續性更強的供應商。而業務部門往往偏好更迅速、更精准的解決方案,傾向于先行自行采購。AI企業就需要平衡和兼顧雙方的需求。我判斷在中長期會有多流匯聚的趨勢,即企業的科技部門會統籌AI智慧化建設的規劃以及技術合作夥伴的選取,總部科技部門和一線業務部門會一同系統性地梳理需求。
同時,在業務梳理過程中,AI企業也需要增進其對行業的理解,從而幫助傳統企業梳理出哪些業務或場景更有AI價值、更容易落地,以塑造短期速贏。追一在進入每個行業時都需要花大量時間瞭解業務流程,建立行業知識庫。
最後,AI不像ERP之類的傳統軟體系統,沒有成熟的全鏈路玩家,還處在比較初級的階段,因此端到端的、定制化的AI服務是稀缺資源且具差異化優勢——系統實施上,大型企業系統多,往往也不標準化,十分消耗人力;知識庫定制上,不同企業的業務流程不同、知識不同,需要定制知識庫;軟體功能定制方面,不同規模、業務類型的企業依然存在不同的需求;哪怕在部署之後,AI企業依然需要持續優化場景,根據交互的效果持續優化業務流程,並試圖拓展新的場景。
Q3:如何理解追一「開放共贏的生態合作體系」?
成博士:追一對各類企業都秉持著開放合作的心態,我們識別了四大類合作夥伴——平臺夥伴、行業夥伴、區域夥伴和咨詢夥伴。
1. 平臺夥伴包括騰訊雲、華為雲等企業,平臺夥伴能夠提供基礎設施,起到「鋪電線」的作用。憑藉平臺夥伴強大的客戶資源和銷售網路,追一能夠觸達更多的終端客戶。而追一能在平臺夥伴通用性的基礎設施之上提供特定垂直領域的解決方案,使面向客戶的解決方案更好落地實施。
2. 行業夥伴指特定行業領域的資訊科技企業,他們相比其他夥伴有更深的行業理解以及更多行業內的客戶資源,也願意在科技方面進行嘗試。追一可以與行業夥伴共同拓展行業內的科技解決方案。
3. 區域夥伴指在當地有較強商務關係、對當地市場瞭解較深入的夥伴。
4. 咨詢夥伴則能夠提供整合咨詢服務,在數位化咨詢、財務咨詢等細分方向擁有豐富的咨詢經驗。
追一在生態合作中除了能夠提供行業定制化的技術方案之外,還可以分享和拓展渠道資源,幫助系統集成商、ISV增收。長遠來看,追一希望把產品服務做得更加標準化,可供他人調用,也可以在自有平臺上集成協力廠商產品和服務。
Q4:你認為未來AI企業的發展趨勢是什麼?
成博士:大趨勢一定是行業越做越深、場景越做越精,提供整體性的行業AI解決方案。這也是追一未來發展的優先事項。
此外,AI企業還應當繼續推進技術普惠,在當前AI大多只在大型企業使用,而未來應當覆蓋更多中小規模的企業。AI企業能做的是把大客戶的主流需求打磨好、標準化,大量復用從頭部企業積累的垂直領域專識,再在過程中逐步建立跨行業復用的能力。
■要點回顧
1.「人工智慧即服務」(AI-as-a-service)依然處於初級階段,還沒有成熟的全鏈路玩家,因此端到端的、定制化的AI服務能夠打造差異化的競爭優勢。
2. 傳統企業需要抓住時間窗口,憑藉多年深耕行業的經驗積累,在AI技術企業追趕行業知識的檔口自我顛覆、自我革命。
3. 對「改造者」而言,「先縱後橫」不失為可行的策略——欲實現持續穩定的AI發展,需要長期深耕垂直領域,持續積累行業know-how,並將縱深積累標準化,以複製到更多的垂直行業。
勞動力發展數位服務平臺 在 Facebook 的最佳貼文
創新工場今年和全球三大管理顧問集團BCG波士頓諮詢合作了一個AI賦能產業的專題研究,我在開篇專文提到「+AI」的未來,定制化服務的需求要遠多於標準化。未來還會有這個研究的系列文章,將陸續分享給大家。
李開復:人工智慧已從「AI+」邁向「+AI」-- 本文来自BCG微信公眾號,經授權轉載。
我曾經預測過未來20年,AI的發展將會在中國帶來影響深遠的產業變革。這是基於在大陸,AI有著明確且豐富的落地應用場景,已經有大量的AI企業活躍於這些垂直領域,積極探索市場化的路徑。作為擅於趨勢前瞻的TechVC,創新工場已經投出了7家AI獨角獸。中國傳統行業規模巨大,正處於科技驅動的升級轉型關鍵時期,我們希望通過科技的力量,為傳統企業降本提效,推動中國實體經濟的發展。
近期,我帶領創新工場團隊與BCG波士頓諮詢旗下的亨德森智庫合作,推出「AI融合產業:‘改造者’如何促進AI普惠」系列研究,通過介紹創新工場投資的AI企業如何賦能傳統行業,探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑,以期對行業企業應用AI有所啟迪。
以下為系列研究的開篇內容:
系列導讀
眾所周知,中國大陸在人工智慧(AI)領域的發展世界領先,尤其在產業應用方面,各行各業都開始嘗試在產業鏈條的不同環節應用AI,以最大化生產與服務的效率。BCG與MIT於2020年發佈的年度AI1報告調研顯示,2020年,在大陸,76%的企業都或多或少應用了AI2,而這一數值在美國是41%,在歐洲是44%。
除卻政府及資本市場的支持、充分的市場競爭與資料供給、勞動力紅利逐漸消退等因素,我們發現,有另一大因素至關重要——在這裡,人工智慧有著明確的落地應用場景,大量AI企業活躍於這些垂直場景中,充當產業中傳統企業應用AI的橋樑,我們稱之為“改造者”。“改造者”通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:‘改造者’如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑,以期對行業企業應用AI有所啟迪。
創新工場由李開復博士創辦于2009年9月,作為國內頂尖的科技型創業投資機構,創新工場深耕在人工智慧&前沿科技、自動化、B2B企業服務、醫療、消費、互聯網等領域,並不斷探索與創新,致力於打造集創業平臺、資金支援、投後服務等的全方位生態投資服務平臺。
對談實錄
Q1
我們知道您接觸過非常多的人工智慧企業,您認為當前人工智慧的應用和發展呈現出什麼樣的趨勢?
李博士:起初,發展通用性人工智慧技術的企業有很大的規模優勢,因為只有少數企業掌握圖像識別、語音辨識等技術。比如,在圖像識別領域可能只有商湯科技和曠視科技這樣的頭部企業具備顯著的技術優勢,他們天然能夠佔據更大的市場份額。
但是橫向的、通用性的技術正在快速地大眾化(commoditize),越來越多的企業逐漸掌握相關技術。以圖像識別為例,攝像頭公司、物聯網設備公司,甚至醫療器械公司都開始具備這項能力。在過去,企業僅利用技術層的優勢就能夠攫取價值,如今這變得不再容易。AI已經從「AI+」的黑科技發明期邁向「+AI」的應用為王階段。「AI+」仍會有價值,但「+AI」則能創造更大的經濟貢獻。更何況科技巨頭可以迅速地以價格、規模等優勢搶佔市場。總而言之,能夠攻破一項技術或平臺的方式太多了。
當然,在特定領域有特殊技術優勢或重大突破的企業依然能夠變現其技術優勢的價值,只不過它們能夠領先市場的時間視窗相比於過去也可能會更短,這些企業需要思考除了技術突破之外,如何能夠迅速地找到落地場景,進而探索市場化的路徑。
與橫向通用技術相對的,垂直的、行業特定的技術解決方案更能夠建立壁壘。在我看來,各個垂直行業都會出現垂直技術企業的爆發機會。中國企業不像美國企業,比如在企業管理軟體方面,由於美國企業標準化程度更高、數位化基礎更強,科技巨頭更容易整合服務,而中國企業,特別是傳統企業行業各有特點,需求各異,要非標得多、碎片化得多,可直接嵌入AI解決方案的現成平臺並不多。中國傳統行業規模巨大,正處於科技驅動的升級轉型關鍵時期,AI、自動化等平臺技術將為其降本增效,創造出巨大的經濟價值。在這個過程中,垂直、特定的行業技術解決方案有望在企業服務賽道上 “彎道超車”,汽車、銀行等各行各業都可能湧現出全新的、垂直的、創新式的行業特定的AI解決方案。所以說,「+AI」的未來,定制化服務的需求要遠多於標準化。
那麼定制化的服務如何定價?技術企業需要深入到行業當中、業務流程當中,識別人工智慧能夠實現的、替代的價值。中國的AI企業每天都在反覆運算,它們剛開始時可能擁有某種通用技術,然後再根據具體的商業問題和場景不斷定制化——思考這項技術能為製造業,又或者醫療健康行業帶來什麼改變?該如何銷售、銷售給誰?在企業中,誰有興趣買?又是誰在做購買決策?與之相應地,AI企業需要再調整其商業模式。
Q2
我們理解人工智慧技術企業需要更深入到垂直行業中去,那另一方面,傳統企業又應當如何應用AI?
李博士:當前大量中國傳統企業在爭先恐後地應用AI,或者嘗試應用AI,就像在電氣時代誰沒有應用電力就會被自然淘汰一樣。尤其是在保險、零售、電商等行業,企業不及時擁抱AI可能就會被新的AI玩家顛覆,或者被應用了AI的競爭對手顛覆——每一次AlphaGo、AlphaFold的突破都會加劇企業的這種焦慮感。另外在經濟下行期,企業也有提升生產管理效率和節降成本的需求,需要尋求像流程機器人之類的自動化的解決方案。
在我看來,傳統企業需要滿足以下三方面的要素,才能夠有效地應用AI:
■ 開明的決策者。技術的應用會給傳統的企業運作模式甚至業務模式帶來顛覆,需要開明、堅定的決策者在整個企業組織中一以貫之地推動變革,來應對可能出現的各類阻力和反對的聲音。
■ 切實可行的計畫。找到可落地的速贏點並付諸實踐,借此向員工展示AI應用的巨大價值與潛力。比起一上來就全面鋪開,尋找單點進行突破顯然更加容易,這一單點最好是非爭議性的、非業務核心的、風險較低的,從這一單點再慢慢地向整個業務流程延展,通過單點速贏逐漸增加員工對AI的理解和信任。
■ 數據。企業需要有高品質的、與業務緊密相關的標識資料以及回饋閉環,將企業不同部門或子業務緊密相連。我們見到過太多失敗的AI應用專案都是敗在資料上,因為企業缺乏高品質的資料。
■ 要點回顧
1
當前,大量行業通用性的人工智慧技術均面臨迅速的大眾化,而垂直行業領域的專識變得更加重要,垂直領域的AI應用成為大勢所趨。
2
傳統企業需要抓住時間視窗,憑藉多年深耕行業的經驗積累,在AI技術企業追趕行業知識的檔口自我顛覆、自我革命。
在BCG看來,傳統企業擁抱AI有多種方式:自建AI能力,與科技企業形成合作或合資企業,以及在這個系列中我們將重點探討的——與AI技術企業合作形成垂直行業生態圈等等。
勞動力發展數位服務平臺 在 資策會創新學習中心 Facebook 的精選貼文
當大家準備1111光棍節拼經濟的時候,
111 勞動部與資策會先拼中部AI產業人才培訓啦!
勞動部勞動力發展署首度攜手資策會,在中部打造「AI產業人才培訓據點」,於1日由勞動部許銘春部長與資策會蕭博仁代理執行長共同出席「AI產業人才培訓據點揭牌記者會」,並邀請國內外廠商(台灣微軟、西門子、上銀、盈錫、Festo…等)、中部大學首長(逢甲大學、朝陽科技大學…等)及相關公協會共同見證,希望深耕在地產業、為產業創造全新價值的人才,帶動產業數位轉型。
根據主計處2017年7月統計資料顯示,臺灣以20到24歲的年齡層失業情形最嚴重,平均每8個人之中就有1人失業,而且30歲以下的青年更是超過20萬人沒有工作,青年的失業占全臺失業人口的1/2,顯現我國目前在青年族群的失業率偏高,亟需改善。
有鑑於此,勞動部許部長表示,勞動力發展署中彰投分署與資策會合作成立「AI產業人才培訓據點」,就是政府與民間合作的最佳模式,由資策會提供機具設備與專業師資,共同培育中高階人才,為人才缺口注入新能量。
蕭代執行長表示資策會教研所在中彰投地區已經深耕多年,希望藉由「AI產業人才培訓據點」,首先以大台中地區為基地,在中彰投建立一個可以鏈結青年與在地產業的教育訓練資源整合平臺,並結合資策會多年來建立的培訓服務資源及 AI 領域的研發能量,例如:無人車自動駕駛與 GPU Server 管控平台等等,以及微軟在 Azure 雲端平台上提供的 CNTK 認知服務與Microsoft Professional Program on AI 一系列精緻的線上課程,規劃出切合產業需求、整合 OnO 的培訓課程。
加上中彰投地區產業聚落的特色,結訓專題由企業出題、學員解題,發揮 AI 在物件辨識、控制與語音處理等方面的優勢,讓結訓的學員們能夠馬上投入產業,變成產業數位轉型的生力軍,達到超過七成的就業率;除此之外,此據點計畫也期待透過資策會整合微軟的課程資源,讓我國青年學子能無縫接軌國際、掌握AI趨勢,學員結訓後都能獲得未來國際相關工作的競爭力證明。
#活動現場設立成果展示攤位
有資策會數位教育研究所、智慧系統研究所、中區產業服務處共同展覽於AI科技相關的研發成果,包含智能物聯應用管控解決方案、精密機械能源可視化平台、數位菁英學習包廂、及教室學習氣氛分析系統。