雖然這篇加權成績計算器鄉民發文沒有被收入到精華區:在加權成績計算器這個話題中,我們另外找到其它相關的精選爆讚文章
在 加權成績計算器產品中有4篇Facebook貼文,粉絲數超過845的網紅朱思翰 Szuhan Chu,也在其Facebook貼文中提到, 《7/8 大盤表現》 上半場拉著大盤的是電子,但下半場拉著大盤的卻又是航運鋼鐵!由於美股續創新高,也讓台股能開高,但電子族群的支撐,還是集中在中小型類股,所以相較於航運的早盤往下殺,撐盤力道有限。幸好航運盤中止血,吸引大量買盤湧入,萬海從月線前258元一路飆到漲停板304元,帶動加權指數翻紅,尾盤上...
加權成績計算器 在 朱思翰 Szuhan Chu Facebook 的最讚貼文
《7/8 大盤表現》
上半場拉著大盤的是電子,但下半場拉著大盤的卻又是航運鋼鐵!由於美股續創新高,也讓台股能開高,但電子族群的支撐,還是集中在中小型類股,所以相較於航運的早盤往下殺,撐盤力道有限。幸好航運盤中止血,吸引大量買盤湧入,萬海從月線前258元一路飆到漲停板304元,帶動加權指數翻紅,尾盤上漲15點,收在17866點,成功守住短均線,成交值再擴大到6378億元。
在當沖仍是盤面主流狀態下,明天盤勢的重點還是在航運與電子的資金搶奪戰,陽明與萬海慎防震盪,今天的大漲一個是反應跌深,另一個則是預告財報。至於電子權值股作為最大伏兵,至今還是動不起來,低價個股的動能,以及未來業績的成長性,可能是近期想要轉進電子股的投資朋友需要關注的。
《7/8 電子族群》
面板股今天終於回神!會曇花一現嗎?起因是面板三虎當中,股性最活潑的中小尺寸面板廠彩晶,董事會昨天核准170億元資本支出預算,要擴充南科廠產能。這也是該廠區自2005年來,首度加碼產能!擴產到底好不好?
市場對於面板的雜音,主要是認為明年面板會供過於求,價格下殺,那麼彩晶這時的擴產,豈不又助長了這樣的態勢?但從另一個角度看,這些最快2023年將開出的產能,彩晶大筆投資代表仍看好後市,新產能仍鎖定中小尺寸面板,包含現在正夯的車載等,所以今天早盤的漲停,或許也是反應公司的信心。但漲停怎麼又那麼快打開?友達群創為何跟漲?恐怕都是當沖客的資金滾動。
乘著話題性,不論是利多還是利空,反正面板股價格在低檔,當沖客怎麼會放過這個機會,彩晶早盤開22.45元衝上漲停後,當沖的獲利了結,才使漲幅收斂。若攤開K線可以發現,股價並沒有明顯脫離平台整理,更不用說群創與友達雖然一度攻高,但漲幅也吐了回來。繞了一大圈無功而返嗎?也未必。分析師認為,這有利於底部的墊高,區間整理型態更確立,盤整後外資要不要回頭改變後市看法,還是脫離區間上攻的關鍵。
電子股要持續關注的,還是在投信續買,且六月營收表現佳的個股,欣興今天很強,但不意外創高後又留了一條上影線,不過投信持續加碼,分析師都認為跟景碩的比價效應之下,後續漲勢仍可期,PCB個股投信愛的不要放過了!
另外車用續強的CMOS影像感測器晶相光,雖然開高收小黑,如果找不到買點,是否可以參考原相(3227)有補漲機會?分析師蜀芳就有分析,這要回到投資人愛買飆股還是溫溫漲,原相絕對是好公司,但在財報「成長性」這件事情上,就不及手握大量低價庫存的晶相光,而且原相的規模比較大,產品線也比較雜,反而是要成為飆股的不利因素,但話說回來,如果放量的話,補漲仍有機會,比較保守的投資人仍可以持續觀察,低檔承接。
《7/8 傳產族群》
今天上演尾盤大驚奇的貨櫃,其實說實在也沒有那麼驚奇。盤中其實有跟觀眾朋友詳細分析了,昨天貨櫃的尾盤其實就可見支撐力道,股價的回測主要還是主力資金撤出,市場信心不足有關。但人家貨櫃的營收獲利就是好!如果以本益比計算,就算是300元的萬海仍打趴一票鋼鐵及散裝輪,所以今天測試到月線關卡前的萬海,不跌破,果然就開始往上強彈。
而且別忘了,貨櫃三雄尚未公布的六月營收,在運價高漲之際,繳出的成績單絕對不會差到哪裡去,有財報護體,要V型反轉向下的可能性很低,所以接下來就是高檔區間震盪的格局。但也因為貨櫃個股是當沖客天堂,既然已經不像以前一路往上無極限,分析師就建議還是短線操作,除非是真的低檔,不然空手的別去淌渾水,靜待運價走勢與營收表現。
至於鋼鐵,今天其實比航運彈得更早,分析師看法不變,產業長線看好,但本益比高檔,所以區間震盪,不須追高殺低,買黑賣紅,注意合理股價,雖然不是飆股型,但仍有不少獲利空間,至於真的要飆股,還是小型鋼鐵如威致彰源等,技術型高手才建議切入囉。
#台股 #大盤 #加權指數 #電子 #傳產 #航運 #鋼鐵 #非凡最前線 #非凡新聞台 #最前線筆記
加權成績計算器 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
來自創新工場大灣區人工智慧研究院的兩篇論文入選了自然語言處理領域(NLP)頂級學術會議 ACL 2020 。
這兩篇論文均聚焦中文分詞領域,是深度學習引入知識後的有益嘗試,將該領域近年來廣泛使用的各資料集上的分數全部刷至新高,在工業中也有著可觀的應用前景。
本文來自創新工場公眾號
……………………………………………………………………
創新工場兩篇論文入選ACL 2020,將中文分詞性能刷至新高
“土地,我的金箍棒在哪裡?”
“大聖,你的金箍,棒就棒在,特別配你的髮型。”
感謝神奇的中文分詞,給我們帶來了多少樂趣。豐富多變的中文行文,給人的理解造成歧義,也給AI分詞帶來挑戰。
近日,自然語言處理領域(NLP)頂級學術會議 ACL 2020 (https://acl2020.org/)正在火熱舉行。
令人振奮的是,來自創新工場大灣區人工智慧研究院的兩篇論文入選。這兩篇論文均聚焦中文分詞領域,是深度學習引入知識後的有益嘗試,將該領域近年來廣泛使用的各資料集上的分數全部刷至新高,在工業中也有著可觀的應用前景。
分詞及詞性標注是中文自然語言處理的基本任務,尤其在工業場景對分詞有非常直接的訴求,但當前沒有比較好的一體化解決方案,而且中文分詞普遍存在歧義和未登錄詞的難題。
基於此,兩篇論文各自提出了“鍵-值記憶神經網路的中文分詞模型”和“基於雙通道注意力機制的分詞及詞性標注模型”,將外部知識(資訊)創造性融入分詞及詞性標注模型,有效剔除了分詞“噪音”誤導,大幅度提升了分詞及詞性標注效果。
兩篇文章的作者有:華盛頓大學博士研究生、創新工場實習生田元賀,創新工場大灣區人工智慧研究院執行院長宋彥,創新工場科研合夥人張潼,創新工場CTO兼人工智慧工程院執行院長王詠剛等人。
ACL(The Association for ComputationalLinguistics)國際計算語言學協會是自然語言處理領域影響力最大、最具活力的國際學術組織之一,自1962年創立以來已有58年歷史,其每年夏天舉辦的年會是該領域學術頂會。
與往年不同的是,受新冠疫情影響,ACL2020全部轉為線上進行,不過這絲毫沒有減弱熱度。根據之前公佈的資料,今年大會投稿數量超過3000篇,共接收 779 篇論文,包括 571 篇長論文和 208 篇短論文,接收率為 25.2%,在全球疫情衝擊下反而是有史以來最盛大的一屆ACL會議,創新工場的技術大牛們也頂著時差連續數晚熬夜參會。
▌利用記憶神經網路,將中文分詞性能刷到歷史新高
中文分詞目的是在中文的字序列中插入分隔符號,將其切分為詞。例如,“我喜歡音樂”將被切分為“我/喜歡/音樂”(“/”表示分隔符號)。
中文語言因其特殊性,在分詞時面臨著兩個主要難點。一是歧義問題,由於中文存在大量歧義,一般的分詞工具在切分句子時可能會出錯。例如,“部分居民生活水準”,其正確的切分應為“部分/居民/生活/水準”,但存在“分居”、“民生”等歧義詞。“他從小學電腦技術”,正確的分詞是:他/從小/學/電腦技術,但也存在“小學”這種歧義詞。
二是未登錄詞問題。未登錄詞指的是不在詞表,或者是模型在訓練的過程中沒有遇見過的詞。例如經濟、醫療、科技等科學領域的專業術語或者社交媒體上的新詞,或者是人名。這類問題在跨領域分詞任務中尤其明顯。
對此,《ImprovingChinese Word Segmentation with Wordhood Memory Networks》這篇論文提出了基於鍵-值記憶神經網路的中文分詞模型。
該模型利用n元組(即一個由連續n個字組成的序列,比如“居民”是一個2元組,“生活水準”是一個4元組)提供的每個字的構詞能力,通過加(降)權重實現特定語境下的歧義消解。並通過非監督方法構建詞表,實現對特定領域的未標注文本的利用,進而提升對未登錄詞的識別。
例如,在“部分居民生活水準”這句話中,到底有多少可能成為詞的組塊?單字可成詞,如“民”;每兩個字的組合可能成詞,如“居民”;甚至四個字的組合也可能成詞,例如“居民生活”。
把這些可能成詞的組合全部找到以後,加入到該分詞模型中。通過神經網路,學習哪些詞對於最後完整表達句意的幫助更大,進而分配不同的權重。像“部分”、“居民”、“生活”、“水準”這些詞都會被突出出來,但“分居”、“民生”這些詞就會被降權處理,從而預測出正確的結果。
在“他從小學電腦技術” 這句話中,對於有歧義的部分“從小學”(有“從/小學”和“從小/學”兩種分法),該模型能夠對“從小”和“學”分配更高的權重,而對錯誤的n元組——“小學”分配較低的權重。
為了檢驗該模型的分詞效果,論文進行了嚴格的標準實驗和跨領域實驗。
實驗結果顯示,該模型在5個資料集(MSR、PKU、AS、CityU、CTB6)上的表現,均達了最好的成績(F值越高,性能越好)。(注:所選擇的五個資料集是中文分詞領域目前全世界唯一通用的標準資料集)
創新工場大灣區人工智慧研究院執行院長宋彥表示,與前人的模型進行比較發現,該模型在所有資料集上的表現均超過了之前的工作,“把中文分詞領域廣泛使用的標準資料集上的性能全部刷到了新高。”
在跨領域實驗中,論文使用網路博客資料集(CTB7)測試。實驗結果顯示,在整體F值以及未登陸詞的召回率上都有比較大提升。
▌“雙通道注意力機制”,有效剔除“噪音”誤導
第二篇論文《Joint ChineseWord Segmentation and Part-of-speech Tagging via Two-way Attentions ofAuto-analyzed Knowledge》提供了一種基於雙通道注意力機制的分詞及詞性標注模型。
中文分詞和詞性標注是兩個不同的任務。詞性標注是在已經切分好的文本中,給每一個詞標注其所屬的詞類,例如動詞、名詞、代詞、形容詞。詞性標注對後續的句子理解有重要的作用。
在詞性標注中,歧義仍然是個老大難的問題。例如,對於“他要向全班同學報告書上的內容”中,“報告書”的正確的切分和標注應為“報告_VV/書_N”。但由於“報告書”本身也是一個常見詞,一般的工具可能會將其標注為“報告書_NN”。
句法標注本身需要大量的時間和人力成本。在以往的標注工作中,使用外部自動工具獲取句法知識是主流方法。在這種情況下,如果模型不能識別並正確處理帶有雜音的句法知識,很可能會被不準確的句法知識誤導,做出錯誤的預測。
例如,在句子“他馬上功夫很好”中,“馬”和“上”應該分開(正確的標注應為“馬_NN/上_NN”)。但按照一般的句法知識,卻可能得到不準確的切分及句法關係,如“馬上”。
針對這一問題,該論文提出了一個基於雙通道注意力機制的分詞及詞性標注模型。該模型將中文分詞和詞性標注視作聯合任務,可一體化完成。模型分別對自動獲取的上下文特徵和句法知識加權,預測每個字的分詞和詞性標籤,不同的上下文特徵和句法知識在各自所屬的注意力通道內進行比較、加權,從而識別特定語境下不同上下文特徵和句法知識的貢獻。
這樣一來,那些不準確的,對模型預測貢獻小的上下文特徵和句法知識就能被識別出來,並被分配小的權重,從而避免模型被這些有噪音的資訊誤導。
即便在自動獲取的句法知識不準確的時候,該模型仍能有效識別並利用這種知識。例如,將前文有歧義、句法知識不準確的句子(“他馬上功夫很好”),輸入該雙通道注意力模型後,便得到了正確的分詞和詞性標注結果。
為了測試該模型的性能,論文在一般領域和跨領域分別進行了實驗。
一般領域實驗結果顯示,該模型在5個資料集(CTB5,CTB6,CTB7,CTB9,Universal Dependencies)的表現(F值)均超過前人的工作,也大幅度超過了斯坦福大學的 CoreNLP 工具,和伯克利大學的句法分析器。
即使是在與CTB詞性標注規範不同的UD資料集中,該模型依然能吸收不同標注帶來的知識,並使用這種知識,得到更好的效果。
而在跨領域的實驗中,和斯坦福大學的CoreNLP 工具相比,該模型也有近10個百分點的提升。
▌主動引入和分辨知識,實現中文分詞技術突破
中文分詞在中國科研領域已經有幾十年的歷史。最初的中文分詞是基於詞典構建,詞典的好壞會直接影響到最後分析的效果。如果某個新詞在詞典裡沒有,那麼模型是死活都分不出來的。
這種方式的局限性還在於,詞典和分詞兩件事情中間始終有一條鴻溝,儘管詞典可以編撰得非常全面,但在處理分詞的時候,因為每一句話都有上下文語境,往往會產生多種不同的切分方法,從而無法有效地在當前語境下對分詞結構進行恰當的指導。
從2003年開始,分詞方法出現了新的突破。研究人員提出了打標籤的方式,通過給每一個字打詞首、詞尾、詞中的標籤,不再需要構建詞典,大幅度提升了未登錄詞的召回效果。
到了2014年左右,深度學習和神經網路開始被廣泛應用到中文分詞中,打標籤的模型從之前的淺層學習變成了深度學習,但演算法本質沒有發生變化,所以提升作用並不太大。
近兩年,學界開始研究怎麼在打標籤的過程中加入外部知識和資訊。創新工場的這兩篇文章就是沿著這個路徑,用記憶神經網路的方式記錄對分詞結果有影響的 n元組,並引入對詞性標注有影響的句法知識,將分詞結果和自動獲得的知識銜接起來,既發揮了神經網路的優勢,也把知識的優勢用上,實現了分詞技術上小而有效的改進和突破。
宋彥表示,“從技術創新的角度,我們的貢獻主要有兩點。一是在現有技術的基礎上,建立了一個一體化的模型框架,使用非監督方法構建詞表,並把知識(資訊)融入進來,使用更高層次的句法知識,來幫助詞性標注,起到'他山之石,可以攻玉’的效果。”
“二是主動吸收和分辨不同的外部知識(資訊)。通過鍵-值記憶神經網路和雙通道注意力機制,進行動態權重的分配,能夠有效分辨知識,區分哪些是有效的,哪些是無效的。雖然這些知識是自動獲取的、不準確的,但‘三個臭皮匠,頂個諸葛亮’,經過有效利用,總能湊出一些有用的資訊。如何實現模型的主動吸收和分辨,就變得更加重要。”
據瞭解,今年的ACL大會,在分詞領域一共收錄了18篇論文,創新工場人工智慧工程院同時有2篇入選,也表現出ACL官方對這一貢獻的認可。
▌具備跨領域分詞能力,提升工業應用效率
中文分詞和詞性標注是最底層的應用,對於接下來的應用和任務處理非常重要。例如對於文本分類、情感分析,文本摘要、機器翻譯等,分詞都是不可或缺的基本“元件”。
宋彥表示,做此項研究的目的是主要為了拓展其工業場景的應用,正確的分詞能夠平衡公司應用開發的效率和性能,同時方便人工干預及(預)後處理。
這也是創新工場人工智慧工程院的努力方向之一。工程院成立於2016年9月,宗旨是銜接科技創新和行業賦能,做嫁接科研和產業應用的橋樑,為行業改造業務流程、提升業務效率。
工程院下設北京總部、南京研究院和大灣區研究院。大灣區研究院再下設資訊感知和理解實驗室,專注于對自然語言處理(NLP)領域的研究。執行院長宋彥本人也有超過15年的NLP領域的科研經驗。
“在工業場景使用的時候,跨領域的模型能力是一個非常直接的訴求。”宋彥表示,在某個領域的訓練模型,大概率也需要應用到其他領域。
“如何在新領域缺少資料,或者新領域只有少量未標注資料的情況下,實現模型的冷開機,依然是項巨大的挑戰。如果能利用外部知識,提高模型性能,就能有效地召回很多在訓練集中沒有出現過的新詞。”
例如搜尋引擎的廣告系統,最初也是通過組詞匹配的方式,在某個特定領域訓練其分詞模型,但在進入一個新的領域時,例如從新聞領域進入醫療領域或體育領域,效果往往會大打折扣,甚至頻頻出錯。
而使用跨領域特性後,廣告系統在進入新領域時,便無需額外的資料,就可以對它進行比較準確的分詞和標注,從而有效匹配廣告和客戶,大大提升系統運行的效率和穩定性。
目前,這兩篇論文的工具都已經開源,在下面兩個連結中,可以找到對應的所有代碼和模型,各位朋友可按需自取:
分詞工具:https://github.com/SVAIGBA/WMSeg
分詞及詞性標注工具:https://github.com/SVAIGBA/TwASP
加權成績計算器 在 追追熊 Facebook 的最佳貼文
【NBA 史上Top 50編輯器】
來分享一個有趣的玩具。NBA球員的歷史排名一直是球迷最愛討論的話題,你有你的排名,我有我的觀點,怎麼戰都戰不出一個結論。而且明知道討論不會有結果,每隔幾個月都有人要提出來引戰。
為此,Nylon Calculus的作家做了一個,「NBA 史上Top 50編輯器」,讓球迷可以自由調整許多係數:成就、獎項、冠軍、數據等等,甚至你要貴古賤今、貴今賤古都行,讓每個人客製出自己的Top 50。
可以調整的因子主要分成三個類別
1.個人成就
最多類別的一項,分成獎項、巔峰表現、巔峰表現、季後賽成績、冠軍數、得分、得分效率。
2.年代
每個年代的加權都可以調整,比如40-50年代草創時期可以稍微拉低,你喜歡90年代就把它調最高。
3.位置
後衛、前鋒、中鋒,三種位置可以調整加權。
此外,還可選擇要不要計算ABA成就,你對那些球隊有偏好等等。
【網站:https://fansided.com/nba/nba-top-50/】