[爆卦]加拿大語言學校效果是什麼?優點缺點精華區懶人包

雖然這篇加拿大語言學校效果鄉民發文沒有被收入到精華區:在加拿大語言學校效果這個話題中,我們另外找到其它相關的精選爆讚文章

在 加拿大語言學校效果產品中有23篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, 譚新強:傳媒軟實力才是真實力 文章日期:2021年6月25日 【明報專訊】今天《蘋果日報》停刊了!我無意討論蘋果的是否真的被政府逼至停業,還是別有用心的自我主動決定,但總可算是一個香港傳媒年代的過去。樂觀來看,此刻亦可以是一個回歸理性、講事實、講道理、講人性、消滅可恥自我種族歧視、團結社會、講好...

 同時也有1部Youtube影片,追蹤數超過13萬的網紅LILLIAN.M,也在其Youtube影片中提到,✈️ 跟雷忠一起出差日本四國拜會市政廳&市長 VLOG :https://www.youtube.com/watch?v=wLDyTMls9lk&t=56s 🔶 #變臉貓 #晶鑽礦物極潤代謝面膜 在這裡找得到: https://reurl.cc/j4mpL 🔶 耳環品牌 #AnaLuisa 紐約...

  • 加拿大語言學校效果 在 Facebook 的最佳解答

    2021-06-25 11:23:25
    有 290 人按讚

    譚新強:傳媒軟實力才是真實力
    文章日期:2021年6月25日

    【明報專訊】今天《蘋果日報》停刊了!我無意討論蘋果的是否真的被政府逼至停業,還是別有用心的自我主動決定,但總可算是一個香港傳媒年代的過去。樂觀來看,此刻亦可以是一個回歸理性、講事實、講道理、講人性、消滅可恥自我種族歧視、團結社會、講好中國故事的契機!

    首先我們不要太天真,迷信西方傳媒就是代表客觀、公平、正義,永遠追求真相,從無偏見,從無國家和種族主義,更永不受政治影響。以美國為例,表面上,左右翼媒體的確非常努力互揭共和黨與民主黨瘡疤,亦進行激烈政策辯論。但當牽涉到重要外交議題,尤其有關政治體制和意識形態,他們都擁有完全一致的本能式偏見,漠視自身美國選舉制度的嚴重反民主瑕疵,但就永遠宗教式批判所有其他政治制度,對客觀事實興趣不大。

    中國更是一個特殊個案,一如在2019年,時任美國國務院前政策規劃主任(Director of Policy Planning)斯金納(Kiron Skinner,黑人女士)坦言,中國崛起,是不同文化的衝突(clash of civilizations),更是史上第一次非白人(non-Caucasian)對美國霸權的挑戰!所以美中之爭,何止意識形態那麼簡單?

    美媒指控中國嚴重性逐步升級
    2017年,哈佛教授Graham Allison出版了《Destined for War: Can America and China escape Thucydides's Trap》一書,提醒了美國需要提防中國的崛起,更可說驅使美國政府走向危險雙邊鬥爭,零和遊戲思維。2018年,美國國防部更首次把中國(跟俄羅斯),提升為對美國最大威脅,取代了之前十多年的所謂恐怖主義。自此,絕非偶然地,美國媒體開始鋪天蓋地,層出不窮的抹黑中國行動。從毫無證據情况下指控華為竊聽,到偏頗的2019年香港暴亂報道,到最離譜的新疆種族滅絕指控,嚴重性逐步升級。近日更開始嘗試推卸自己治疫失敗,超過60萬美國人喪命的責任,轉移視線到中國頭上。在特朗普年代,《紐約時報》、CNN等主流傳媒把COVID來自武漢實驗所意外之說列為缺乏科學證據的陰謀論,但到了今天,在毫無新證據情况下,又突然作出180度改變,不停捕風捉影,亂作故事。

    美媒也很擅長玩弄煽情。早前看過一個《紐約時報》頭版的故事,講述湖南農村發生的一宗慘案。一位婦人以為丈夫因生意失敗而駕車墮崖自殺,遂起了輕生之念,帶着兩個孩子跳進池塘自殺。但原來丈夫沒自殺,只是企圖欺騙人壽保險公司,但沒有告訴太太,弄出悲劇。他後來良心發現,在電台烽煙節目剖白,然後自首,最後被判6年監禁。這固然是個人間慘劇,但中國農村是否仍是婦女的人間煉獄?事實恰恰相反,在過去20年,隨着經濟起飛,加上城市化發展,農村婦女可算最受惠的其中一群組,自殺率大幅下降90%。中國自殺率已低於全球平均,相反美國自殺率持續上升,已高於全球平均數。

    近月美國傳媒當然極力渲染新疆的所謂人權狀况,甚至指控中國犯下人類最嚴重罪行──種族滅絕!全球人民都看過這些新聞,因此加深對中國的偏見。即使如此,美國不止拿不出有力證據,連殺戮維族人民的指控都沒有。沒有殺人的種族滅絕,是否有點奇怪?原來聯合國的種族滅絕定義(由西方帶頭寫的)下,不需要殺人,種族滅絕的行為包括控制生育,摧毀文化和語言,以及把兒童與父母隔離等等。在這方面,當然西方是充滿經驗的。

    近月最真實的種族滅絕新聞,其實發生在加拿大。在卑詩省南部的一所天主教寄宿學校校園內,發現了最少215具兒童骸骨,挖掘工作仍未完成,相信數字將繼續上升。此學校是用來執行從1874年開始的加拿大強行隔離和所謂教育原住民兒童政策,直到1997年,即24年前才停止。除此卑詩省學校外,全國總共有約130所類似設施,老實講,這些何來是學校,其實這些是運作了過百年的恐怖集中營!據估計,曾被關進去的兒童超過15萬,離奇慘死總數目超過6000人。請記得加拿大人口少,原住民人數更少,謀殺6000名兒童,是多麼恐怖和殘忍的滔天罪行!除加拿大外,當然美國和澳洲,也曾經有類似原住民兒童隔離政策。

    抹黑漸見效果 多國對中國負面印象比例升
    國際新聞有報道,但篇幅跟針對新疆的誣告根本沒法比較。我公司有兩個暑期見習生,一個是本港大學生,一個美國大學生,兩個都聰明勤奮,非常留意時事新聞,大部分消息來自Twitter和Instagram等社交媒體。他們兩個都當然聽過對新疆的各樣指控,但竟然他們兩個都從未聽過此宗加拿大進行真正長期種族滅絕的天大新聞!他們自己也非常驚訝,至此才真正明白西方傳媒的極度偏頗!圖1顯示從Google Trend可見到被洗腦的網民,對新疆的興趣遠比加拿大種族滅絕罪行高。

    不幸西方傳媒的抹黑中國行動,確已達到某些危險惡毒效果。過去數年,對中國有負面印象的美國人比例大升,去年高達73%。更值得憂慮的是不少其他西方國家,亦出現類似情况(見圖2)。大部分人都明白西方接近全面操控全球主要媒體,但不少人仍危險地低估事情的嚴重性。事實上操控傳媒是維持美國霸權的最重要工具之一(甚或沒有之一),相反中國的真正短板就是傳媒(另外是金融),帶來極大傷害。

    美操控全球傳媒 延續霸權
    有些人誤會傳媒只屬較不重要的所謂「軟實力」,重要性始終不及軍事和經濟等所謂「硬實力」。事實上軟硬實力有不可分割的關連性,缺一不可。美國操控全球傳媒帶來的最大好處是幫助美元延續的霸權。40年前,美國GDP佔合球經濟50%,今天已跌至只約23%,若以PPP計算,更已跌至第二,只約15%。美國經濟規模,相對全球不斷縮小,但軍事支出反而瘋狂擴張,每年超過7000億美元,只是F35戰機計劃,已將花驚人的1.7萬億美元。過去20年的窮兵黷武,非法戰爭和種族滅絕,除塗炭數以百萬計生靈外,亦花了額外的6萬億美元以上。赤字本已無窮增長,但上屆政府仍堅持減稅2萬億美元,後來更遇上大疫情,百上加斤,每年財赤躍升至佔GDP的10%以上,總債務更逼近100%。如何解決此辣手難題,答案竟然是長期零利率,再加QE狂印鈔票。不少人如羅傑斯(Jim Rogers)和羅奇(Stephen Roach)等苦口婆心,警告此舉可導致美元大貶值,超級通脹,甚至如古羅馬帝國般的崩潰!

    但奇怪地,美國經濟仍然強勁,美元地位更穩如泰山。美元仍是最流通貨幣,佔全球貿易超過30%,全球儲備約60%,90%以上全球外匯交易,其中一邊為美元!怎可能美國經濟佔全球比例不斷下降,但美元地位紋風不動,情况跟英鎊隨着大英帝國沒落而失去地位完全不同?

    我認為答案正是美國擁有前所未見,對全球傳媒的操控,此話語權容許美國講好美國故事,簡直接近天方夜譚地步。經互聯網傳播出去的新媒體的威力,包括串流平台如Netflix,和社交媒體如facebook和Twitter等,更遠超任何傳統媒體如報紙和電視台。傳統媒體都有地域性,每個國家都有嚴厲監管和審查,大部分只容許本國人民持有牌照,嚴防外國勢力滲透(美國也有嚴謹要求)。但奇怪地,在互聯網的華麗包裝下,每個國家都受到極大「與時並進」壓力,必須放棄所有監管,讓所有美媒,包括抹黑甚至危害國家安全的內容,自由傳播到每個人的手機上!冷靜客觀來看,此放縱行為簡直瘋狂,亦不負責任,可帶來不堪想像的傷害。事實上,只有極少國家如中國般夠膽阻擋美媒的攻勢,絕大部分都大開中門,任由美媒進行洗腦,結果是全球觀點更一致化,不管事實和科學,一面倒支持美國,包括針對中國的胡說八道。

    客觀事實是,美媒的軟實力,才是日常美國最厲害的真實力!下周將再分析中國在國際媒體上的嚴重弱勢,所帶來的傷害和危機。

    中環資產投資行政總裁
    [譚新強 中環新譚]

    https://www.mpfinance.com/fin/columnist2.php?col=1463481132098&node=1624563324283&issue=20210625

  • 加拿大語言學校效果 在 李開復 Kai-Fu Lee Facebook 的最佳貼文

    2020-10-10 14:43:51
    有 580 人按讚

    近日,我與阿萊克斯·彭特蘭教授(Alex Pentland)展開了一場”AI如何重塑人類社會”的精彩對話。

    《連線》雜誌的資深撰稿人威爾·奈特(Will Knight)主持了這場對話。

    阿萊克斯·彭特蘭教授任教于麻省理工學院,為全球大資料權威專家之一,現任MIT連接科學研究所主任、MIT媒體藝術與科學教授,擁有“可穿戴設備之父”、《福布斯》“全球七大權威大資料專家”、《麻省理工科技評論》“年度十大突破性科技”兩度桂冠獲得者等頭銜,曾參與創建MIT媒體實驗室,是全球被引述次數最多的計算科學家之一。

    對話金句:

    李開復:

     AI最大的機會蘊藏在與傳統企業的結合中,這種價值的產生極其迅速,只需要幾個月,甚至短短幾周。
     未來突破很難預測,對奇點、超級智慧的爭辯,在我看來都過於樂觀了。
     小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,不要與巨頭核心業務正面硬碰。

    阿萊克斯·彭特蘭:

     AI絕非試圖取代人類,而是促進多元文化之間的相互連接、團隊合作,讓人們更好的進行社交和連接彼此。
     最困難的其實是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
     人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。

    我在對話中表示,當我們試圖解決AI問題時,應該用技術來解決技術的問題,可以尋求與監管部門協作,而不只是丟給他們,“新技術會衍生新的問題,我們應該多方嘗試用更進階的技術性解決方案,就像電腦病毒剛出現時,殺毒軟體隨之誕生。”

    彭特蘭教授認為,人工智慧的核心,是促進多元文化之間的相互連接。不只是工程師或科學家,連經濟學家、政治家都必須參與進來。“國家之間應該促進合作、制定互通標準,就像TCP/IP互聯網協定那樣,避免AI冷戰。” 我們都贊同,AI發展從來不是單打獨鬥,跨學科思維、跨領域合作尤為重要。 這場對話是麻省理工學院中國創新與創業論壇(MIT-CHIEF) 組織的高峰對話系列活動,主題是《計算與未來: AI與資料科學如何重塑人類社會》。

    麻省理工學院中國創新與創業論壇(MIT-CHIEF)由麻省理工學院的中國留學生創立,至今已有十年,是北美歷史最悠久的、由高校學生組織的中國創新創業論壇。系列高峰對話邀請了頂級科學家、投資人及創業者,共同探討科技創新及商業化過程中面臨的挑戰。

    以下是我們對話的核心內容,由我的同事整理、分享給大家:

    Part I 主題演講

    ▌李開復:各方應協作,讓AI 更務實

    非常榮幸再次受到MIT-CHIEF的邀請,對於人工智慧的看法,這次我主要想講四點。

    第一點是我書裡的主題,人工智慧的超能力。我們已經從人工智慧的發明期步入應用期階段,從應用落地層面來說,正迎來了AI發展最大的機遇。

    很多科技公司目前已對人工智慧進行了多樣化佈局,從視覺、語言、觸覺和其他感知技術,到自動化機器人、無人駕駛等,對很多領域開啟了深遠的影響。雖然眼下所見的AI應用仍有局限性,但我預測未來的格局會非常龐大,依據統計,各行各業採用AI的程度目前不到5%,AI應用的中長期增長曲線相當可期。

    第二點是我很欣喜看到的一點,AI正在和傳統行業深度融合。隨著人們對人工智慧的瞭解越來越多,更多的AI公司湧現出來。

    AI最大的機會蘊藏在與傳統企業的結合中,創新工場也正在説明金融、製造、物流、零售、醫療等行業的公司進行AI變革。

    作為AI投資人,我認為在這些行業如果找到正確的AI應用方向,就能帶來上千萬的回報。這種商業價值的產生是極其迅速的,通常只需要幾個月,甚至短短幾周就能看到成果。

    現在人工智慧在傳統產業的滲透率仍在個位數,仍然有很大的提升空間。然而對於很多公司來說,它們需要的是高度定制化的方案,而非通用型AI方案,所以融合的過程中,不可避免會遇到不少挑戰和痛點。

    第三,我早年做過很多科研工作,很高興能看到關於系統一和系統二(System One, System Two)的討論,我們期待人工智慧技術從系統一升級為系統二,即從識別、決策、優化等能力,升級到感知、認知等進階智慧的能力。

    有不同的學派都在努力讓人工智慧更接近人類智慧,其中一個流派主張回歸經典的AI理念,甚至重新構建嶄新的模型結構,在深度學習技術的基礎上利用人類的知識。但我更支持另一個理論——深度學習的潛力還沒有完全釋放。

    回看人工智慧過去60多年的歷程,最大的突破來自於計算能力和資料量大增而產生的可擴展演算法。我們看到了卷積神經網路(CNN)帶來的喜人成績,還有預訓練自然語言處理模型(Pre-Trained Models for Natural Language Processing)的廣泛運用。

    預訓練模型與人類語言學習的模式類似,不管是英語還是中文,在習得這些語言之後,再去學習程式設計、藝術、化學。在無人監督的學習環境中,這種模式比我們想像得還要強大,就像阿爾法圍棋(AlphaGo)一樣。

    最後一點我想說的是,如何讓AI變得更務實。

    AI有很多問題,例如隱私、資料安全、治理和監管,在此就不一一討論了。當我們試圖解決這些AI難題時,有人認為讓監管部門加強管理是唯一辦法,其實不然,我們是否也可以朝著研發更厲害的技術性解決方案去努力?

    就像電腦病毒剛出現時,殺毒軟體隨之誕生;面對千年蟲難題時,也迅速找到了技術應對方案。我們可以通過研發新技術,應對DeepFake深度換臉程式的挑戰;或者通過聯邦學習技術,在保證資料私密性的同時,滿足深度學習訓練需求。

    作為握有技術能力的群體,我們需要與監管部門一起協作,而不只是把工作丟給他們。相信有了各方的助力,我們可以讓AI的應用變得更有深度,更加務實,更高效地克服現在面臨的種種問題。

    ▌阿萊克斯·彭特蘭:國家間應建立互通標準,避免“AI冷戰”

    我對當前的深度學習技術不太樂觀。

    最為主要原因是,深度學習不僅需要龐大的資料來源,而且要求這些資料長時間恒定不變,以保證模型訓練結果的可靠性,例如人類的面容、語言,就是相對穩定不變的資料來源。

    但深度學習卻沒法應對快速變化的真實情況。亞馬遜在新冠疫情蔓延速度暴增時,出現了倉庫貨物緊缺,不得不停止送貨服務。這種經過深度學習高度優化後的系統發生崩潰,就是因為快速變化的疫情,和深度學習對恒定資料來源的需求是矛盾的。

    另外,我想談談如何通過聯邦學習,促進資料的流通。

    大多數公司沒有足夠豐富的資料,需要聯合不同的資料來源。基於這種需求,出現了很多新商業模式,比如“資料經紀人”——他們不出售資料,而是把資料借出去,作特定需求的使用。

    “資料經紀人”業務湧現了很多,他們促進了資料的流通,也加強了資料的隱私性。因此,像聯邦學習這樣的技術和商業策略結合,有效解決了資料在合規性和所有權方面的難題。

    聯邦學習也依賴於新的基礎設施建設,為資料應用和深度學習提供基礎環境,比如區塊鏈技術。現在世界上很多國家在做相關系統的建設實驗,新加坡等國家設置了一種相互競爭的區塊鏈系統,來解決支付和物流問題。我們最近也幫助瑞士做了類似的實驗,涉及不同資料的互通性和連貫性問題。

    我們仍在研究如何用儘量少的資料,實現人工智慧的目標。少量資料是指不斷更新的短期資料,這些資料能使AI應對迅速變化的情況,並及時做出調整。

    我們打算將AI與其他基礎科學結合,例如阿爾法圍棋(AlphaGo)就是這類結合的初步嘗試。這些方法不依賴于大量恒定資料,可能會比深度學習更加強大。

    除此之外,我們在探討用AI保障聯邦學習過程中不同資料方的權益,這是實現不同國家之間的互通性、支付信任度、物流運輸等方面合作的關鍵前提。

    另一方面,我們探索如何將AI技術應用於加密資料上。我們和大公司以及政府密切合作,找出解決系統入侵和保障網路安全的方法。

    我同時花了很多時間研究與政府的合作。政府很多時候不知道如何通過大資料做決策,也不知道如何進行資料優化。而AI能夠幫助政府實現更高的效率,比如聯合國現在已經有了很多可持續發展目標的相關評估指標,世界經濟論壇也可以為會員國提供不同的標準測算。

    基於我們已有的多中繼資料庫,現在可以利用AI實現全新的資料優化方式,將貧困、不平等這種之前無法量化的指標,通過可量化的指標進行評估。

    同時,要真正實現這個目標,我們還需要制定統一的互通性標準。如果沒有這個標準,國家之間就不會相互信任去合作,就可能出現AI冷戰。

    因此我們需要找到促進合作的方式,就像TCP/IP互聯網協議那樣。而之前我提到的,新加坡、瑞士等現在正在嘗試的區塊鏈系統,將有希望解決國家間缺乏互通標準的問題。

    Part II 對話

    ▌ 美國線上教育發展難度更大,只在ZOOM上講課是不夠的

    Q1:疫情加速了行業的改變,遠端醫療、線上教育開始蓬勃發展,這只是AI對人類社會產生影響的冰山一角。想請兩位談一談,目前看好AI在哪些領域應用的未來前景?

    李開復:疫情的確對整個社會產生了實質性的影響,人們行為習慣發生了很多改變,更願意接受線上學習和工作了。

    這種新的行為習慣產生了大量資料流程,為AI應用帶來了更多可能性。比如大健康領域以及遠端醫療中所產生的資料,可以訓練更智慧的模型。同時更多人開始在基因組學、新藥研發方面結合新的AI技術進行研究,因此我相信AI在醫療健康領域的潛能是非常巨大的。

    AI與教育的結合也很值得期待。一方面可以説明老師處理重複性的日常事務,例如批改作業,讓老師得以將時間精力投入到更有創造性的事情上,能更悉心地為孩子提供優質教學。另一方面可以提高學生的課堂參與度和積極性,比如設置卡通版AI虛擬老師,讓課程充滿趣味性。

    在中國,有很多線上教育公司在疫情之前就已經發展迅速,像創新工場投資的VIPKID,讓國外的純正英語老師線上上教授中國學生。目前,中國的線上教育已經擴展到了更多科目,包括體育、舞蹈、書法等素質教育課程。

    相比之下,美國線上教育發展的難度會更大。畢竟只在ZOOM上講課是不夠的,好的線上教育必須要有好的內容。

    ▌AI核心是增強人際互聯,應注重文化多樣性

    阿萊克斯·彭特蘭:李開復博士提到的教育案例,我不是很認同。

    MIT大約20年前就在教育中使用AI,重點根本不是內容,我們甚至提倡將內容免費開放給大眾。

    AI絕非試圖取代人類的作用,我們更強調用AI增強人與人之間的互動,讓人們更好的社交和連接彼此。比如手機上人工智慧技術,不是要取代你,而是讓你高效地找到最適合的工作、最正確的人,讓你更容易的獲取資訊,並進行創新。

    我們可以利用資料激發更強的創新力,培養領導力。只有基於這樣的宗旨,才能促進更有創造力的教育和學習,這比關注教育內容本身重要得多。

    在加拿大,有家創業公司正在訓練普通民眾學習AI,比如水管工,教學效果非常不錯。他們的教育方式不是簡單的教授基本知識,而是以一種能夠激發人們互動思考的方式。

    我們之前在中國調研了3000多個孵化器,發現創業公司成功的要素裡,第一個是文化多樣性,也就是說創始團隊背景的複雜性和多樣性。第二個是團隊成員專業的多樣性,他們能否發揮自己所長,並很好地進行團隊合作。

    1956年,馬文·明斯基 (Marvin Minsky)提出了人工智慧這個詞。但我們對於人工智慧的理解,不應該只停留在“人工”層面,而應擴展到多元文化之間的相互連接、團隊合作,我把它叫做延伸智能(Extended Intelligence)。這也是我想強調的,人工智慧這個名詞有一定的偶然性,但它的核心點是增強人與人之間的互聯性。

    ▌AI未來突破難預測,奇點、超級智慧過於樂觀

    Q2:未來十年AI有沒有可能取得重要突破?比如GPT-3近期展現驚人的能力。兩位認為未來的突破方向是什麼?

    李開復:過去60多年來,深度學習是唯一的重大突破。在這之後,卷積神經網路(CNN)和GPT-3等都算是重要的改善,我對於人工智慧的漸進式改善保持樂觀。

    對科學家來說,他們更期待著技術上的突破式進展。但我覺得未來十年基礎科研或許不會有大的突破。但模型相對容易,只要有大量的資料,就可以從實驗室進入到行業應用,CNN和GPT-3都是模型加海量資料的成果。

    我是務實派的,雖然持有樂觀態度,但並不是一位“未來學家”。未來的突破很難預測,對奇點(Singularity)的爭辯,甚至預測超級智慧的出現,在我看來都過於樂觀了。

    阿萊克斯·彭特蘭:我同意李博士的觀點。很多生物機制很難解釋,包括用感知認識事物、理解聲音、尋找食物等,是深度學習演算法做不到的。但深度學習可以研究科學、制定規則、研究理論,並進行實踐。

    從務實的角度來說,我最感興趣的就是聯邦學習。就醫療而言,我們有這麼多醫院,在新冠疫情期間做了很多的實驗,為什麼這些實驗資料不能進行聯合呢?

    儘管資料有不相容的地方,但這也是一個很好的機會去探究不同的資料之間的關聯性。在未來,我們對資料的需求也許會越來越少,外科醫生或者物理學家或許不需要太多資料,因為他們對規則已經瞭若指掌了。

    ▌不要墨守成規,要跨領域、跨學科應對挑戰

    Q3:人工智慧會有什關鍵挑戰?對於想從事這個行業的人,有什麼是需要瞭解的關鍵點?

    李開復:首先,大背景在改變,新科技層出不窮,我們每年都需要學習新的東西。

    其次,人工智慧可能引起各種問題,包括偏見、歧視、倫理道德等,是否危害人類的身體健康,無人駕駛技術該何去何從等等。

    第三,人工智慧的研發需要深刻地理解技術對社會、生活與人類健康會產生的影響。我非常欣賞斯坦福和MIT這樣的高校,能夠把AI教育擴展到各個學科,讓研發人員及早意識到自己的責任和價值。

    阿萊克斯·彭特蘭:是的,我朋友做過一個有關電的趣味類比,電動馬達最初在工廠裡用於生產的時候,並沒有發揮出多大的作用,因為大家並不知道如何改造生產流程。

    AI在一些領域發揮的作用是顯著的,但應用到其他領域時,就需要改造流程。很多情況下,最困難的就是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。

    而有意思的是,就像李博士提到的,像MIT和斯坦福這樣的高校確實在認真嚴肅地對待這個問題。

    比如,我今天早上正好就這個話題跟G20領導人對話,大家一致認為我們必須從跨領域、跨學科的角度去面對這個問題,不能只是工程師或者社會科學從業者們在做,經濟學家,政治家等等都必須參與進來緊密合作。

    隨著AI的應用領域越來越廣,除了必須具備強有力的技巧來建立社會規則,還需要對研究經費、企業投入等進行各種調整。

    ▌雖然大公司實力不容小覷,但依舊對小公司抱有期待

    Q4:AI研究會消耗大量的資源,我們是否應該將資源往學術界平衡?現在已經發生資源的重新分配和平衡了嗎?

    李開復:就人才而言,現在已經有重新平衡的跡象了。

    過去,頂尖大學的學者基於待遇和種種考量,不少選擇去企業界工作。而近期,曾任職於百度、海爾、位元組跳動等公司的數位優秀AI科學家已經回歸高校。

    但像GPT-3這樣的技術,仍然不是大學和小公司能支付得起的。支撐GPT-3運行的電腦是世界算力第五的超級電腦。每進行一次演算法訓練,就要花費460萬美金,只有像騰訊、穀歌、微軟這個級別的公司才能負擔得起如此強大的算力。

    我觀察到,近年的AI創業公司已經和5年前截然不同了。它們一般由AI科學家和商業人才共同創建,為了解決特定問題而生,並非紙上談兵做突破性科研,切入的領域也往往是巨頭公司忽略的地方。

    例如,為製造業進行AI賦能,不是一件輕鬆的事,需要去工廠實地勘查,瞭解運作方式。大公司因為賺錢很容易,不願意做這些性價比低的苦活累活。這些小公司的努力一旦有了成果,就會給產業界帶來革命性的影響。所以,雖然大公司的實力不容小覷,但我依舊對小公司抱有期待。

    阿萊克斯·彭特蘭:大學和公司是一種融合的關係,不僅體現在人才流動上,也會進行資訊資源分享,彼此是整體性的合作態勢。

    當然這也不是絕對,產業界的保密需求還是存在的,只是從學校的出發點來說,我們願意毫無保留地為大家提供更好的研究成果,並與企業合作,形成標準化平臺。

    ▌人工智慧取代人類需要上百年或更久

    Q5:兩位認為什麼是AI不能取代的?

    李開復:一類是創造力、分析能力、邏輯辯論能力,瞭解自己知道什麼不知道什麼,這些是人工智慧無法取代的。另外一類是同理心,人類之間的信任、友誼,自我認知、意識等。

    阿萊克斯·彭特蘭:人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。

    ▌AI創業建議I:找到小切入點,不要與巨頭正面硬碰

    Q6:李博士提到了AI在小企業中的運用,可否再舉例說明是如何運用的?

    李開復:這個問題分兩部分:一個是小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,並且不要與巨頭核心業務正面硬碰。

    對於那些中小型非AI、但想應用AI的公司,需要確保有足夠的資料,以訓練與核心商業價值掛鉤的AI模型,並且有願意變革的開放性公司文化。

    所以,早期應用AI的公司可能規模較大,因為他們有足夠大的資料,和可相容變革的商業模型。每個例子都不同,不是任何一家公司都要應用AI。

    阿萊克斯·彭特蘭:如果我們放寬AI的定義,或許水管工、合同工都有資料,通過一些簡單的分析、整合,AI也可以在很大程度上改進他們的工作。

    這些都是很小的切入點,基於簡單的AI分析、機器學習,依舊可以產生巨大的潛力。

    ▌ AI創業建議II:知曉技術,同時理解商業

    Q7:兩位再分享一下最後的建議?

    李開復:我們在步入一個AI開始滲透到方方面面的令人振奮的時代,我希望所有的學生們都能參與到這個改革浪潮中。要深刻地理解人工智慧的商業落地,而不僅僅鑽研技術本身。

    阿萊克斯·彭特蘭:不要太較真於深度學習或者冗長的演算法,一切始於要解決的現實問題。不要止步於技術本身,要明白資料類型、形態和規律,關注商業流程。

    感謝葉樂斐、劉諾、藍萱、張昊、陳冬傑、劉子昂、張梓煜、錢淩寒、水一方、沈雍在校譯和審閱上對本文的貢獻。

  • 加拿大語言學校效果 在 李開復 Kai-Fu Lee Facebook 的最讚貼文

    2020-10-10 12:00:25
    有 8 人按讚

    近日,我與阿萊克斯·彭特蘭教授(Alex Pentland)展開了一場”AI如何重塑人類社會”的精彩對話。

    《連線》雜誌的資深撰稿人威爾·奈特(Will Knight)主持了這場對話。

    阿萊克斯·彭特蘭教授任教于麻省理工學院,為全球大資料權威專家之一,現任MIT連接科學研究所主任、MIT媒體藝術與科學教授,擁有“可穿戴設備之父”、《福布斯》“全球七大權威大資料專家”、《麻省理工科技評論》“年度十大突破性科技”兩度桂冠獲得者等頭銜,曾參與創建MIT媒體實驗室,是全球被引述次數最多的計算科學家之一。

    對話金句:

    李開復:

     AI最大的機會蘊藏在與傳統企業的結合中,這種價值的產生極其迅速,只需要幾個月,甚至短短幾周。
     未來突破很難預測,對奇點、超級智慧的爭辯,在我看來都過於樂觀了。
     小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,不要與巨頭核心業務正面硬碰。

    阿萊克斯·彭特蘭:

     AI絕非試圖取代人類,而是促進多元文化之間的相互連接、團隊合作,讓人們更好的進行社交和連接彼此。
     最困難的其實是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
     人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。

    我在對話中表示,當我們試圖解決AI問題時,應該用技術來解決技術的問題,可以尋求與監管部門協作,而不只是丟給他們,“新技術會衍生新的問題,我們應該多方嘗試用更進階的技術性解決方案,就像電腦病毒剛出現時,殺毒軟體隨之誕生。”

    彭特蘭教授認為,人工智慧的核心,是促進多元文化之間的相互連接。不只是工程師或科學家,連經濟學家、政治家都必須參與進來。“國家之間應該促進合作、制定互通標準,就像TCP/IP互聯網協定那樣,避免AI冷戰。” 我們都贊同,AI發展從來不是單打獨鬥,跨學科思維、跨領域合作尤為重要。 這場對話是麻省理工學院中國創新與創業論壇(MIT-CHIEF) 組織的高峰對話系列活動,主題是《計算與未來: AI與資料科學如何重塑人類社會》。

    麻省理工學院中國創新與創業論壇(MIT-CHIEF)由麻省理工學院的中國留學生創立,至今已有十年,是北美歷史最悠久的、由高校學生組織的中國創新創業論壇。系列高峰對話邀請了頂級科學家、投資人及創業者,共同探討科技創新及商業化過程中面臨的挑戰。

    以下是我們對話的核心內容,由我的同事整理、分享給大家:

    Part I 主題演講

    ▌李開復:各方應協作,讓AI 更務實

    非常榮幸再次受到MIT-CHIEF的邀請,對於人工智慧的看法,這次我主要想講四點。

    第一點是我書裡的主題,人工智慧的超能力。我們已經從人工智慧的發明期步入應用期階段,從應用落地層面來說,正迎來了AI發展最大的機遇。

    很多科技公司目前已對人工智慧進行了多樣化佈局,從視覺、語言、觸覺和其他感知技術,到自動化機器人、無人駕駛等,對很多領域開啟了深遠的影響。雖然眼下所見的AI應用仍有局限性,但我預測未來的格局會非常龐大,依據統計,各行各業採用AI的程度目前不到5%,AI應用的中長期增長曲線相當可期。

    第二點是我很欣喜看到的一點,AI正在和傳統行業深度融合。隨著人們對人工智慧的瞭解越來越多,更多的AI公司湧現出來。

    AI最大的機會蘊藏在與傳統企業的結合中,創新工場也正在説明金融、製造、物流、零售、醫療等行業的公司進行AI變革。

    作為AI投資人,我認為在這些行業如果找到正確的AI應用方向,就能帶來上千萬的回報。這種商業價值的產生是極其迅速的,通常只需要幾個月,甚至短短幾周就能看到成果。

    現在人工智慧在傳統產業的滲透率仍在個位數,仍然有很大的提升空間。然而對於很多公司來說,它們需要的是高度定制化的方案,而非通用型AI方案,所以融合的過程中,不可避免會遇到不少挑戰和痛點。

    第三,我早年做過很多科研工作,很高興能看到關於系統一和系統二(System One, System Two)的討論,我們期待人工智慧技術從系統一升級為系統二,即從識別、決策、優化等能力,升級到感知、認知等進階智慧的能力。

    有不同的學派都在努力讓人工智慧更接近人類智慧,其中一個流派主張回歸經典的AI理念,甚至重新構建嶄新的模型結構,在深度學習技術的基礎上利用人類的知識。但我更支持另一個理論——深度學習的潛力還沒有完全釋放。

    回看人工智慧過去60多年的歷程,最大的突破來自於計算能力和資料量大增而產生的可擴展演算法。我們看到了卷積神經網路(CNN)帶來的喜人成績,還有預訓練自然語言處理模型(Pre-Trained Models for Natural Language Processing)的廣泛運用。

    預訓練模型與人類語言學習的模式類似,不管是英語還是中文,在習得這些語言之後,再去學習程式設計、藝術、化學。在無人監督的學習環境中,這種模式比我們想像得還要強大,就像阿爾法圍棋(AlphaGo)一樣。

    最後一點我想說的是,如何讓AI變得更務實。

    AI有很多問題,例如隱私、資料安全、治理和監管,在此就不一一討論了。當我們試圖解決這些AI難題時,有人認為讓監管部門加強管理是唯一辦法,其實不然,我們是否也可以朝著研發更厲害的技術性解決方案去努力?

    就像電腦病毒剛出現時,殺毒軟體隨之誕生;面對千年蟲難題時,也迅速找到了技術應對方案。我們可以通過研發新技術,應對DeepFake深度換臉程式的挑戰;或者通過聯邦學習技術,在保證資料私密性的同時,滿足深度學習訓練需求。

    作為握有技術能力的群體,我們需要與監管部門一起協作,而不只是把工作丟給他們。相信有了各方的助力,我們可以讓AI的應用變得更有深度,更加務實,更高效地克服現在面臨的種種問題。

    ▌阿萊克斯·彭特蘭:國家間應建立互通標準,避免“AI冷戰”

    我對當前的深度學習技術不太樂觀。

    最為主要原因是,深度學習不僅需要龐大的資料來源,而且要求這些資料長時間恒定不變,以保證模型訓練結果的可靠性,例如人類的面容、語言,就是相對穩定不變的資料來源。

    但深度學習卻沒法應對快速變化的真實情況。亞馬遜在新冠疫情蔓延速度暴增時,出現了倉庫貨物緊缺,不得不停止送貨服務。這種經過深度學習高度優化後的系統發生崩潰,就是因為快速變化的疫情,和深度學習對恒定資料來源的需求是矛盾的。

    另外,我想談談如何通過聯邦學習,促進資料的流通。

    大多數公司沒有足夠豐富的資料,需要聯合不同的資料來源。基於這種需求,出現了很多新商業模式,比如“資料經紀人”——他們不出售資料,而是把資料借出去,作特定需求的使用。

    “資料經紀人”業務湧現了很多,他們促進了資料的流通,也加強了資料的隱私性。因此,像聯邦學習這樣的技術和商業策略結合,有效解決了資料在合規性和所有權方面的難題。

    聯邦學習也依賴於新的基礎設施建設,為資料應用和深度學習提供基礎環境,比如區塊鏈技術。現在世界上很多國家在做相關系統的建設實驗,新加坡等國家設置了一種相互競爭的區塊鏈系統,來解決支付和物流問題。我們最近也幫助瑞士做了類似的實驗,涉及不同資料的互通性和連貫性問題。

    我們仍在研究如何用儘量少的資料,實現人工智慧的目標。少量資料是指不斷更新的短期資料,這些資料能使AI應對迅速變化的情況,並及時做出調整。

    我們打算將AI與其他基礎科學結合,例如阿爾法圍棋(AlphaGo)就是這類結合的初步嘗試。這些方法不依賴于大量恒定資料,可能會比深度學習更加強大。

    除此之外,我們在探討用AI保障聯邦學習過程中不同資料方的權益,這是實現不同國家之間的互通性、支付信任度、物流運輸等方面合作的關鍵前提。

    另一方面,我們探索如何將AI技術應用於加密資料上。我們和大公司以及政府密切合作,找出解決系統入侵和保障網路安全的方法。

    我同時花了很多時間研究與政府的合作。政府很多時候不知道如何通過大資料做決策,也不知道如何進行資料優化。而AI能夠幫助政府實現更高的效率,比如聯合國現在已經有了很多可持續發展目標的相關評估指標,世界經濟論壇也可以為會員國提供不同的標準測算。

    基於我們已有的多中繼資料庫,現在可以利用AI實現全新的資料優化方式,將貧困、不平等這種之前無法量化的指標,通過可量化的指標進行評估。

    同時,要真正實現這個目標,我們還需要制定統一的互通性標準。如果沒有這個標準,國家之間就不會相互信任去合作,就可能出現AI冷戰。

    因此我們需要找到促進合作的方式,就像TCP/IP互聯網協議那樣。而之前我提到的,新加坡、瑞士等現在正在嘗試的區塊鏈系統,將有希望解決國家間缺乏互通標準的問題。

    Part II 對話

    ▌ 美國線上教育發展難度更大,只在ZOOM上講課是不夠的

    Q1:疫情加速了行業的改變,遠端醫療、線上教育開始蓬勃發展,這只是AI對人類社會產生影響的冰山一角。想請兩位談一談,目前看好AI在哪些領域應用的未來前景?

    李開復:疫情的確對整個社會產生了實質性的影響,人們行為習慣發生了很多改變,更願意接受線上學習和工作了。

    這種新的行為習慣產生了大量資料流程,為AI應用帶來了更多可能性。比如大健康領域以及遠端醫療中所產生的資料,可以訓練更智慧的模型。同時更多人開始在基因組學、新藥研發方面結合新的AI技術進行研究,因此我相信AI在醫療健康領域的潛能是非常巨大的。

    AI與教育的結合也很值得期待。一方面可以説明老師處理重複性的日常事務,例如批改作業,讓老師得以將時間精力投入到更有創造性的事情上,能更悉心地為孩子提供優質教學。另一方面可以提高學生的課堂參與度和積極性,比如設置卡通版AI虛擬老師,讓課程充滿趣味性。

    在中國,有很多線上教育公司在疫情之前就已經發展迅速,像創新工場投資的VIPKID,讓國外的純正英語老師線上上教授中國學生。目前,中國的線上教育已經擴展到了更多科目,包括體育、舞蹈、書法等素質教育課程。

    相比之下,美國線上教育發展的難度會更大。畢竟只在ZOOM上講課是不夠的,好的線上教育必須要有好的內容。

    ▌AI核心是增強人際互聯,應注重文化多樣性

    阿萊克斯·彭特蘭:李開復博士提到的教育案例,我不是很認同。

    MIT大約20年前就在教育中使用AI,重點根本不是內容,我們甚至提倡將內容免費開放給大眾。

    AI絕非試圖取代人類的作用,我們更強調用AI增強人與人之間的互動,讓人們更好的社交和連接彼此。比如手機上人工智慧技術,不是要取代你,而是讓你高效地找到最適合的工作、最正確的人,讓你更容易的獲取資訊,並進行創新。

    我們可以利用資料激發更強的創新力,培養領導力。只有基於這樣的宗旨,才能促進更有創造力的教育和學習,這比關注教育內容本身重要得多。

    在加拿大,有家創業公司正在訓練普通民眾學習AI,比如水管工,教學效果非常不錯。他們的教育方式不是簡單的教授基本知識,而是以一種能夠激發人們互動思考的方式。

    我們之前在中國調研了3000多個孵化器,發現創業公司成功的要素裡,第一個是文化多樣性,也就是說創始團隊背景的複雜性和多樣性。第二個是團隊成員專業的多樣性,他們能否發揮自己所長,並很好地進行團隊合作。

    1956年,馬文·明斯基 (Marvin Minsky)提出了人工智慧這個詞。但我們對於人工智慧的理解,不應該只停留在“人工”層面,而應擴展到多元文化之間的相互連接、團隊合作,我把它叫做延伸智能(Extended Intelligence)。這也是我想強調的,人工智慧這個名詞有一定的偶然性,但它的核心點是增強人與人之間的互聯性。

    ▌AI未來突破難預測,奇點、超級智慧過於樂觀

    Q2:未來十年AI有沒有可能取得重要突破?比如GPT-3近期展現驚人的能力。兩位認為未來的突破方向是什麼?

    李開復:過去60多年來,深度學習是唯一的重大突破。在這之後,卷積神經網路(CNN)和GPT-3等都算是重要的改善,我對於人工智慧的漸進式改善保持樂觀。

    對科學家來說,他們更期待著技術上的突破式進展。但我覺得未來十年基礎科研或許不會有大的突破。但模型相對容易,只要有大量的資料,就可以從實驗室進入到行業應用,CNN和GPT-3都是模型加海量資料的成果。

    我是務實派的,雖然持有樂觀態度,但並不是一位“未來學家”。未來的突破很難預測,對奇點(Singularity)的爭辯,甚至預測超級智慧的出現,在我看來都過於樂觀了。

    阿萊克斯·彭特蘭:我同意李博士的觀點。很多生物機制很難解釋,包括用感知認識事物、理解聲音、尋找食物等,是深度學習演算法做不到的。但深度學習可以研究科學、制定規則、研究理論,並進行實踐。

    從務實的角度來說,我最感興趣的就是聯邦學習。就醫療而言,我們有這麼多醫院,在新冠疫情期間做了很多的實驗,為什麼這些實驗資料不能進行聯合呢?

    儘管資料有不相容的地方,但這也是一個很好的機會去探究不同的資料之間的關聯性。在未來,我們對資料的需求也許會越來越少,外科醫生或者物理學家或許不需要太多資料,因為他們對規則已經瞭若指掌了。

    ▌不要墨守成規,要跨領域、跨學科應對挑戰

    Q3:人工智慧會有什關鍵挑戰?對於想從事這個行業的人,有什麼是需要瞭解的關鍵點?

    李開復:首先,大背景在改變,新科技層出不窮,我們每年都需要學習新的東西。

    其次,人工智慧可能引起各種問題,包括偏見、歧視、倫理道德等,是否危害人類的身體健康,無人駕駛技術該何去何從等等。

    第三,人工智慧的研發需要深刻地理解技術對社會、生活與人類健康會產生的影響。我非常欣賞斯坦福和MIT這樣的高校,能夠把AI教育擴展到各個學科,讓研發人員及早意識到自己的責任和價值。

    阿萊克斯·彭特蘭:是的,我朋友做過一個有關電的趣味類比,電動馬達最初在工廠裡用於生產的時候,並沒有發揮出多大的作用,因為大家並不知道如何改造生產流程。

    AI在一些領域發揮的作用是顯著的,但應用到其他領域時,就需要改造流程。很多情況下,最困難的就是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。

    而有意思的是,就像李博士提到的,像MIT和斯坦福這樣的高校確實在認真嚴肅地對待這個問題。

    比如,我今天早上正好就這個話題跟G20領導人對話,大家一致認為我們必須從跨領域、跨學科的角度去面對這個問題,不能只是工程師或者社會科學從業者們在做,經濟學家,政治家等等都必須參與進來緊密合作。

    隨著AI的應用領域越來越廣,除了必須具備強有力的技巧來建立社會規則,還需要對研究經費、企業投入等進行各種調整。

    ▌雖然大公司實力不容小覷,但依舊對小公司抱有期待

    Q4:AI研究會消耗大量的資源,我們是否應該將資源往學術界平衡?現在已經發生資源的重新分配和平衡了嗎?

    李開復:就人才而言,現在已經有重新平衡的跡象了。

    過去,頂尖大學的學者基於待遇和種種考量,不少選擇去企業界工作。而近期,曾任職於百度、海爾、位元組跳動等公司的數位優秀AI科學家已經回歸高校。

    但像GPT-3這樣的技術,仍然不是大學和小公司能支付得起的。支撐GPT-3運行的電腦是世界算力第五的超級電腦。每進行一次演算法訓練,就要花費460萬美金,只有像騰訊、穀歌、微軟這個級別的公司才能負擔得起如此強大的算力。

    我觀察到,近年的AI創業公司已經和5年前截然不同了。它們一般由AI科學家和商業人才共同創建,為了解決特定問題而生,並非紙上談兵做突破性科研,切入的領域也往往是巨頭公司忽略的地方。

    例如,為製造業進行AI賦能,不是一件輕鬆的事,需要去工廠實地勘查,瞭解運作方式。大公司因為賺錢很容易,不願意做這些性價比低的苦活累活。這些小公司的努力一旦有了成果,就會給產業界帶來革命性的影響。所以,雖然大公司的實力不容小覷,但我依舊對小公司抱有期待。

    阿萊克斯·彭特蘭:大學和公司是一種融合的關係,不僅體現在人才流動上,也會進行資訊資源分享,彼此是整體性的合作態勢。

    當然這也不是絕對,產業界的保密需求還是存在的,只是從學校的出發點來說,我們願意毫無保留地為大家提供更好的研究成果,並與企業合作,形成標準化平臺。

    ▌人工智慧取代人類需要上百年或更久

    Q5:兩位認為什麼是AI不能取代的?

    李開復:一類是創造力、分析能力、邏輯辯論能力,瞭解自己知道什麼不知道什麼,這些是人工智慧無法取代的。另外一類是同理心,人類之間的信任、友誼,自我認知、意識等。

    阿萊克斯·彭特蘭:人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。

    ▌AI創業建議I:找到小切入點,不要與巨頭正面硬碰

    Q6:李博士提到了AI在小企業中的運用,可否再舉例說明是如何運用的?

    李開復:這個問題分兩部分:一個是小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,並且不要與巨頭核心業務正面硬碰。

    對於那些中小型非AI、但想應用AI的公司,需要確保有足夠的資料,以訓練與核心商業價值掛鉤的AI模型,並且有願意變革的開放性公司文化。

    所以,早期應用AI的公司可能規模較大,因為他們有足夠大的資料,和可相容變革的商業模型。每個例子都不同,不是任何一家公司都要應用AI。

    阿萊克斯·彭特蘭:如果我們放寬AI的定義,或許水管工、合同工都有資料,通過一些簡單的分析、整合,AI也可以在很大程度上改進他們的工作。

    這些都是很小的切入點,基於簡單的AI分析、機器學習,依舊可以產生巨大的潛力。

    ▌ AI創業建議II:知曉技術,同時理解商業

    Q7:兩位再分享一下最後的建議?

    李開復:我們在步入一個AI開始滲透到方方面面的令人振奮的時代,我希望所有的學生們都能參與到這個改革浪潮中。要深刻地理解人工智慧的商業落地,而不僅僅鑽研技術本身。

    阿萊克斯·彭特蘭:不要太較真於深度學習或者冗長的演算法,一切始於要解決的現實問題。不要止步於技術本身,要明白資料類型、形態和規律,關注商業流程。

    感謝葉樂斐、劉諾、藍萱、張昊、陳冬傑、劉子昂、張梓煜、錢淩寒、水一方、沈雍在校譯和審閱上對本文的貢獻。

  • 加拿大語言學校效果 在 LILLIAN.M Youtube 的最佳貼文

    2019-06-14 19:30:01

    ✈️ 跟雷忠一起出差日本四國拜會市政廳&市長 VLOG :https://www.youtube.com/watch?v=wLDyTMls9lk&t=56s

    🔶 #變臉貓 #晶鑽礦物極潤代謝面膜 在這裡找得到: https://reurl.cc/j4mpL

    🔶 耳環品牌 #AnaLuisa 紐約官網:http://bit.ly/AnaLuisa_Lillian 10美元折扣碼:Lillian10

    🔶 本次歐洲遊學代辦:Study DIY 自助家遊學網 https://www.study-diy.com.tw

    補充:部分觀眾用指責的語氣說我沒有為其他學生爭取權益,到第一線跟學校抗議/搜集證據/反駁轟媽/認為我應該要跟轟媽溝通or說我太軟弱之類的,第一當下跟轟媽交涉的是我本人不是你們,留言區我已經回答過很多次了顯然你們沒有稍微看過再來指責,基本上我是去工作體驗遊學生活,我沒繳任何學費給學校,以及各種原因我當時其實並不適合親自去學校理論,但代辦知道狀況,後續就交由代辦去處理我沒有插手。第二,我去短期體驗而已,並不是要常待一兩個月,我認為轟媽的個性以及她的神經質不適合讓我多花時間去溝通繼續忍受回家的壓力,細節懶得再解釋,總之我不覺得親自溝通會有效果,我待的時間也不長所以我並不想浪費時間去做這件事。第三,你們口中說的維護其他學生的權益,說認真好像不是我的責任,如果時間夠且我立場的合適去做這件事的話我並不排斥,但誠如上面所說,我在當地時間並不多,當時的立場也不適合,因此我就直接搬出去了沒有其他動作,後續交由代辦去跟學校溝通。以上,正義魔人真的可以了。

    就像影片說的,其實每個原因跟規定分開來說可能都是小問題,但每件事情合起來住在那個寄宿家庭就真的滿有壓力的了...主要我覺得轟媽實在有點雙面人我覺得滿可怕的...尤其接到贊助商的電話真的傻爆眼,所以最後還是決定火速搬出去了,也謝謝我這次歐洲遊學的贊助商,雖然他們也滿頭問號怎麼會搞得這麼尷尬,但還是以學生的感受為主去協助問題,以上~希望大家出門都能遇到友善的寄宿家庭喔!

    🔶 * BGM
    ---------------------------------------------------------
    Most of my BGM is from NCS, Concordia Recordings, FreeMusicWave & SkyBlew :
    NCS:https://www.youtube.com/user/NoCopyrightSounds/videos?disable_polymer=1
    Concordia Recordings:https://www.youtube.com/user/concordiarecordings/videos
    FreeMusicWave:https://www.youtube.com/user/freemusicwave/videos
    SkyBlew : https://soundcloud.com/SkyBlewMusic
    ---------------------------------------------------------

    🔶 FIND ME HERE:
    ——————————————————————————————————
    ◎Facebook : https://www.facebook.com/Lillian.MandTheTaiwaneseTheMalaysian/
    ◎Instagram : https://www.instagram.com/lillianmin_/
    ◎Business合作邀約請至妮妮 : niny598@gmail.com
    ——————————————————————————————————

    #StudyDIY #自助家遊學網

你可能也想看看

搜尋相關網站