雖然這篇判斷檔案格式鄉民發文沒有被收入到精華區:在判斷檔案格式這個話題中,我們另外找到其它相關的精選爆讚文章
在 判斷檔案格式產品中有26篇Facebook貼文,粉絲數超過2,850的網紅矽谷牛的耕田筆記,也在其Facebook貼文中提到, ref: https://ably.com/blog/no-we-dont-use-kubernetes 八月第一篇,就來個有趣的文章,來看看 ably 這間 SaaS 公司為什麼沒有使用 Kubernetes,不但當前沒有使用,甚至短期未來內都不會想要使用 更是直接的說如果你有興趣來加入團隊,千...
同時也有559部Youtube影片,追蹤數超過4萬的網紅吳老師教學部落格,也在其Youtube影片中提到,從EXCEL VBA到Python開發第2次上課 01_重點回顧與BMI計算 02_計算BMI與格式化到小數點第二位 03_邏輯判斷BMI的評語 04_用format格式化資料 05_用for迴圈加總1到99 06_奇數偶數分別加總 07_用step與兩個for迴圈 08_九九乘法表單列輸出 09...
判斷檔案格式 在 GOtrip.hk Instagram 的精選貼文
2020-05-09 13:43:24
【#GOtrip熱話】BNO好處多多,很多香港人都喜歡同時擁有。如有多個免簽證國家,去旅行就更加方便!現時英國護照署簡化了BNO (renew) 續期的步驟,只要在官網遞交申請並上載證件相即可。雖然如此,Gotrip為大家整理了申請續期資料,例如 countersign (副簽),相片要求,遺失/補...
-
判斷檔案格式 在 吳老師教學部落格 Youtube 的最讚貼文
2021-09-27 23:21:39從EXCEL VBA到Python開發第2次上課
01_重點回顧與BMI計算
02_計算BMI與格式化到小數點第二位
03_邏輯判斷BMI的評語
04_用format格式化資料
05_用for迴圈加總1到99
06_奇數偶數分別加總
07_用step與兩個for迴圈
08_九九乘法表單列輸出
09_九九乘法表多列輸出
完整教學
http://goo.gl/aQTMFS
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/_vbapython117
吳老師教學論壇
http://www.tqc.idv.tw/
課程簡介:入門
建置Python開發環境
基本語法與結構控制
迴圈、資料結構及函式
VBA重要函數到Python
檔案處理
資料庫處理
課程簡介:進階
網頁資料擷取與分析、Python網頁測試自動化、YouTube影片下載器
處理 Excel 試算表、處理 PDF 與 Word 文件、處理 CSV 檔和 JSON 資料
實戰:PM2.5即時監測顯示器、Email 和文字簡訊、處理影像圖片、以 GUI 自動化來控制鍵盤和滑鼠
上課用書:
參考書目
Python初學特訓班(附250分鐘影音教學/範例程式)
作者: 鄧文淵/總監製, 文淵閣工作室/編著
出版社:碁峰 出版日期:2016/11/29
Python程式設計入門
作者:葉難
ISBN:9789864340057
出版社:博碩文化
出版日期:2015/04/02
吳老師 110/9/27
EXCEL,VBA,Python,東吳推廣部,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境 -
判斷檔案格式 在 吳老師教學部落格 Youtube 的最佳貼文
2021-09-27 23:21:35從EXCEL VBA到Python開發第2次上課
01_重點回顧與BMI計算
02_計算BMI與格式化到小數點第二位
03_邏輯判斷BMI的評語
04_用format格式化資料
05_用for迴圈加總1到99
06_奇數偶數分別加總
07_用step與兩個for迴圈
08_九九乘法表單列輸出
09_九九乘法表多列輸出
完整教學
http://goo.gl/aQTMFS
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/_vbapython117
吳老師教學論壇
http://www.tqc.idv.tw/
課程簡介:入門
建置Python開發環境
基本語法與結構控制
迴圈、資料結構及函式
VBA重要函數到Python
檔案處理
資料庫處理
課程簡介:進階
網頁資料擷取與分析、Python網頁測試自動化、YouTube影片下載器
處理 Excel 試算表、處理 PDF 與 Word 文件、處理 CSV 檔和 JSON 資料
實戰:PM2.5即時監測顯示器、Email 和文字簡訊、處理影像圖片、以 GUI 自動化來控制鍵盤和滑鼠
上課用書:
參考書目
Python初學特訓班(附250分鐘影音教學/範例程式)
作者: 鄧文淵/總監製, 文淵閣工作室/編著
出版社:碁峰 出版日期:2016/11/29
Python程式設計入門
作者:葉難
ISBN:9789864340057
出版社:博碩文化
出版日期:2015/04/02
吳老師 110/9/27
EXCEL,VBA,Python,東吳推廣部,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境 -
判斷檔案格式 在 吳老師教學部落格 Youtube 的最讚貼文
2021-09-27 23:21:04從EXCEL VBA到Python開發第2次上課
01_重點回顧與BMI計算
02_計算BMI與格式化到小數點第二位
03_邏輯判斷BMI的評語
04_用format格式化資料
05_用for迴圈加總1到99
06_奇數偶數分別加總
07_用step與兩個for迴圈
08_九九乘法表單列輸出
09_九九乘法表多列輸出
完整教學
http://goo.gl/aQTMFS
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/g/_vbapython117
吳老師教學論壇
http://www.tqc.idv.tw/
課程簡介:入門
建置Python開發環境
基本語法與結構控制
迴圈、資料結構及函式
VBA重要函數到Python
檔案處理
資料庫處理
課程簡介:進階
網頁資料擷取與分析、Python網頁測試自動化、YouTube影片下載器
處理 Excel 試算表、處理 PDF 與 Word 文件、處理 CSV 檔和 JSON 資料
實戰:PM2.5即時監測顯示器、Email 和文字簡訊、處理影像圖片、以 GUI 自動化來控制鍵盤和滑鼠
上課用書:
參考書目
Python初學特訓班(附250分鐘影音教學/範例程式)
作者: 鄧文淵/總監製, 文淵閣工作室/編著
出版社:碁峰 出版日期:2016/11/29
Python程式設計入門
作者:葉難
ISBN:9789864340057
出版社:博碩文化
出版日期:2015/04/02
吳老師 110/9/27
EXCEL,VBA,Python,東吳推廣部,自強工業基金會,EXCEL,VBA,函數,程式設計,線上教學,PYTHON安裝環境
判斷檔案格式 在 矽谷牛的耕田筆記 Facebook 的最佳解答
ref: https://ably.com/blog/no-we-dont-use-kubernetes
八月第一篇,就來個有趣的文章,來看看 ably 這間 SaaS 公司為什麼沒有使用 Kubernetes,不但當前沒有使用,甚至短期未來內都不會想要使用
更是直接的說如果你有興趣來加入團隊,千萬不要把將 Kubernetes 導入到團隊中是一個可能發生的事情。
我個人覺得這篇文章滿好的,因為是認真的去比較導入 Kubernetes 帶來的改變,而這些改變對團隊來說到底是可接受還是不可接受
而不是所謂的人云亦云,人家要我也要,人家不要我也不要...
文章分成兩部分,前述介紹當前 Ably 的環境架構是什麼,而半部分則是很技術的去探討如果導入 Kubernetes 帶來的好處與壞處是什麼
最終權衡比較之下,會發現導入 Kubernetes 沒有帶來實質上的好處。
文章開頭先簡述了一下 Kubernetes 這幾年的風潮,從最初 Google Borg 的開發開始談起,作者特別提到當初 Borg 的用法可是將一堆實體機器給搭建出一個 Private Cloud 的叢集給團隊使用,
而目前 Kubernetes 更多的用法則是搭建於 Public Cloud 上面的虛擬機器中,透過將 Kubernetes 部署到這些不同的 Cloud Provider 似乎帶來了介面統一的結果,對於 DevOps 人員來說
不同 Cloud Provider 如今看起來都是 Kubernetes 的樣貌。
Ably 目前到底怎麼部署應用程式
Ably 主要使用 AWS 作為其 Cloud Provider,並且於 EC2 機器上使用 docker/container 來部署團隊中的應用程式。
作者團隊中沒有使用任何已知的 Orchestration 服務來管理多節點上的 docker/container,取而代之的則是每個 VM 開機後則會根據 autoscaling group 的機制來判斷
每個機器應該要部署哪種 container/docker。
對於 Ably 來說,團隊中沒有任何 scheduler 相關的服務來調度各種服務,這意味每個 VM 就代表一種服務,所以將 VM 上的服務從 Core 轉換成 frontend 這種行為不會發生。
今天需要針對需求轉換服務時就以 VM 為基準來整批換掉即可。
每個節點上面都會有一個輕量的監控服務,用來確保運作的 Container 如果掛掉後可以被重啟,甚至如果當前運行的版本不符合需求時也能夠將該服務給停止。
流量方面,因為每個 Autoscaling Group 就代表一個服務,所以直接使用 NLB 與 Target Group 來將流量導入該 Autoscaling Group 即可。
至於容器與容器之間的內部流量(譬如 k8s service 等)作者認為也不是太大問題,畢竟每個機器本身都會被 VPC 賦予一個 IP 地址,所以使用上沒有什麼太大的問題。
接下來作者從幾個層次去探討當前設計與使用 Kubernetes 帶來的改變,分別有 (原文很多,這邊摘要不然文章會太長)
題外話,由於 Ably 的 Infra Team 數量有限,所以要考慮 K8s 只會考慮 K8s Service,如 EKS。
1. Resource Management
Ably:
a. 根據服務的需求來決定每個服務要用到的 VM 等級
b. 不需要去煩惱如何處理將多個小服務給部署到一個適合的大 VM 中
c. 作者稱這種行為其實就是 AWS 官方強調的 Right Sizing, 譬如只能跑兩個 Thread 的服務不需要 16vCPUs, 久久寫一次硬碟的服務也不需要一個 90,000 IOPS 的 SSD
d. 選擇一個正確的元件來搭建一個符合服務的 VM 讓團隊可以控制成本同時也減少額外的管理負擔
K8s:
a. 必須要使用一個比較強大等級的 EC2 VM,畢竟上面要透過 Container 部署很多服務
b. 針對那些需要小資源的服務來說,透過這種方式能夠盡可能的榨乾機器的資源,整體效能使用率會更好
c. 但是針對資源量沒有很辦法明確定義的服務則是會盡可能地去吃掉系統上的資源,這種被稱為 nosy neighbors 的常見問題已經不是首次出現了, Cloud Provider 本身就需要針對 VM 這類型的服務去思考如何處理資源使用,而 Cloud Provider 都有十年以上的經驗再處理這一塊
而所有 Kubernetes 的使用者則必須要自己去處理這些。
d. 一個可能的作法則是一個 VM 部署一個服務,不過這個做法跟團隊目前的作法已經完全一致,所以就資源管理這一塊,團隊看不到使用 Kubernetes 的優勢。
2. Autoscaling
Ably:
a. EC2 VM 本身可以藉由 Autoscaling Group 來動態調整需求
b. 有時候也是會手動的去調整 EC2 的數量,基本上手動跟自動是互相輔佐的
c. 團隊提供的是 SaaS 服務,所以其收費是針對客戶實際上用多少服務來收,如果開了過多 EC2 VM,則很多不要的花費與開銷都是團隊要自行吸收
d. 團隊需要一個盡可能有效率的方式能夠即使遇到流量暴衝時也能夠保證良好的服務的機制
K8s:
a. 可以透過不少方式來動態調整 Container 的數量,
b. 甚至可以透過 Cluster autoscaler 來針對節點進行調整,根據需求關閉節點或是產生更多節點
c. 動態關閉節點的有個問題是關閉節點時通常會選擇盡可能閒置的節點,但是閒置並不代表沒有任何服務部署再
上面,因此該節點上的 Container 都要先被轉移到其餘節點接者該目標節點才可以被正式關閉。這部分的邏輯作者認為相對複雜
d. 整體來說,k8s 有兩個動態調整的部分,動態節點與動態服務,而現有的架構只有一個動態節點。所以使用 k8s 則會讓問題變得更多更複雜。
3. Traffic Ingress
Ably:
a. Traffic Ingress 基本上每個 cloud provider 都提供了很好的解決方案,基本上團隊只要能夠維持每個服務與背後的機器的關係圖,網路流量基本上都沒有什麼需要團隊管理的。
b. 使用者會透過直接存取 NLB 或是透過 CloudFront 的方式來存取團隊內的服務
K8s:
a. EKS 本身可以透過 AWS VPC CNI 使得每個 Container 都獲得 VPC 內的 IP,這些 IP 都可以讓 VPC 內的其他服務直接存取
b. 透過 AWS LB Controller,這些 Container 可以跟 AWS LB 直接整合,讓封包到達 LoadBalancer 後直接轉發到對應的 Container
c. 整體架構並不會比團隊目前架構複雜
d. 唯一缺點大概就是這個解決方案是完全 AWS 綁定,所以想要透過 k8s 來打造一個跨 Cloud Provider 的統一介面可能就會遇到不好轉移的問題。
4. DevOps
Ably:
a. 開發團隊可以透過簡單的設定檔案來調整部署軟體的版本,後續相關機制就會將 VM 給替換掉,然後網路流量也會自然的導向新版服務
K8s:
a. 開發團隊改使用 Kubernetes 的格式來達到一樣的效果,雖然背後運作的方式不同但是最終都可以對開發團隊帶來一樣的效果。
上次四個分析基本上就是,使用 k8s 沒有帶來任何突破性的好處,但是 k8s 本身還有其他的功能,所以接下來作者想看看 k8s 是否能夠從其他方面帶來好處
Multi-Cloud Readiness
作者引用兩篇文章的內容作為開頭,「除非經過評估,否則任何團隊都應該要有一個跨 Cloud-Provider 的策略」
作者表明自己團隊的產品就是那個經過評估後斷言不需要跨 Cloud Provider 策略的團隊,同時目前沒有往這個方向去追求的打算。
同時作者也不認為 K8s 是一個能夠有效達成這個任務的工具。舉例來說,光 Storage 每家的做法都不同,而 K8s 沒有辦法完全將這些差異性給抽象畫,這意味者開發者終究還是要針對這些細節去處理。
Hybrid Cloud Readiness
管理混合雲(Public Cloud + Private Cloud based on Bare-Metal servers)是作者認為一個很合理使用 K8s 的理由,畢竟這種用法就跟當初 Google Borg 用法一致,是經過驗證可行的。
所以 Ably 如果有計畫要維護自己的資料中心時,底層就會考慮使用 Kubernetes 來管理服務。畢竟這時候沒有任何 Cloud Provider 提供任何好像的功能。
不過 Ably 目前沒有任何計畫,所以這個優點也沒有辦法幫助到團隊
Infrastructure as Code
團隊已經大量使用 Terraform, CloudFormation 來達成 IaC,所以透過 k8s YAML 來維護各種架構不是一個必要且真的好用的方式。
Access to a large and active community
另外一個很多人鼓吹 K8S 的好處就是有龐大的使用者社群,社群內有各種問題分享與探討。
作者認為
a. AWS 的使用者社群數量是高於 Kubernetes
b. 很多情況下,一個迭代太快速的產品其實也不一定對團隊有太大的幫助。
c. 很多人都使用 k8s,但是真正理解 k8s 的人微乎其微,所以想要透過社群來幫忙解決問題其實比你想像的還要難,畢竟裡面的問題太雜,很多時候根本很難找到一個真正有效的答案。
Added Costs of Kubernetes
為了轉移到 K8s, 團隊需要一個全新的 team 來維護 k8s 叢集以及使用到的所有基本服務。舉例來說,EKS, VPN CNI, AWS LB 帶來的網路好處並不是啟動 EKS 就會有的,
還必須要安裝相關的 Controller 並且進行設定,這些都是額外的維運成本。
如果找其他的服務供應商來管理 Kubernetes,這意味公司就要花費更多的$$來處理,所以對團隊來說,金錢與工作量都會提高,不同的解決方式只是這兩個指標的比例不同而已。
結論:
1. Ably 覺得 Kubernetes 做得很好,但是團隊目前沒有任何計畫去使用它,至少目前這階段沒有看到任何實質好處
2. 仔細評估後會發現,導入 k8s 其實也會帶出不少管理上的問題,反而並沒有減輕本來的負擔
判斷檔案格式 在 社會心理,從他們到我們-林仁廷 諮商心理師 Facebook 的最佳貼文
【林仁廷心理師新書宣傳】《挑對時機做自己,冷眼不冷心的處世智慧》方言文化
。
這是當時一口氣寫三本的第三本
其他兩本是《何必管別人怎麼看,反正沒人看》、《當亞斯人來到地球》
這本重點放在「人與社會環境的互動」,講述大多時候我們其實都身不由己,後來就習慣了,跳脫不出社會框架,以為沒有別的選擇
不是的,當然要做自己,但要先「工欲善其事,必須利其器」,認識人性與心理工具,也要認識社會心理,有時不妨將計就計、演演戲。掌握的越多,越能自主開創人生。
文章一半改寫自部落格過去寫過的社會議題,另一半是串連此主題新寫,仔細分析個人心理與社會環境的關係,又建議如何互動。
。
因為疫情關係,大家鮮少去書店,實體書一落千丈
是故出版社決定先發行「電子書」,待8月再發行紙本書
敬請大家捧場。
------
書籍介紹:
父母的要求、親戚的比較、迎合別人認同、社會標準的緊箍咒,你無時不活在別人寫好的「人設腳本」,這些活生生的人際困境,令你沮喪與迷惘:「怎麼辦?該順從別人,還是勇敢做自己?」
★第一步:認識自己,與情緒平和共處
擁有多年諮商臨床經驗的林仁廷心理師,在本書中一步步引導你從「認識自己」、「親友相處」、「社會關係」,擴展出最佳的群我人際互動。
開心做自己的第一步,是先學會運用「認知與情緒的心理工具」,這有助於確立「你怎麼看待自己」,以及了解「自我性格與意識」是怎麼從童年到現在,以及將來會如何發展。
透過「認知與情緒的心理工具」,你將明白情緒如何對人的行為反應帶來影響,林仁廷心理師也提供三種練習來學會情緒辨識與平和共處:
◎書寫情緒日記:記錄每天印象最深刻的情緒種類、引發情緒的因果。
◎描繪情緒語句:以情緒詞彙為題,完成情緒句子,內容要基於個人回憶。
◎專注身體感受:從身體反應覺察情緒的存在,找出壓力源,並放鬆身體釋放情緒。
★第二步:與人連結,找出溝通失敗的障礙
阿德勒說:「所有問題都是人際關係的問題。」點出了人際關係對每個人來說是何等重要,而「自我中心」的主觀意識,是助長人際挫敗與溝通恐懼症的元兇。
《挑對時機做自己,冷眼不冷心的處世智慧》書中將教會你三個解方,能有效調整「以自我為中心」的主觀偏狹──
【解方一】探索害怕溝通原因:試想溝通失敗的關係與情緒,是什麼阻礙了你?你害怕什麼?找出因果就有改善的方向。
【解方二】資訊充足時再判斷:不再用揣測來解讀他人訊息,而是多提問確定對方想法。
【解方三】試著詢問對方感受:溝通需要「傾聽」文字外的情緒、語調與行為,了解越多才能完整知曉對方意涵。
這三個解方能有效解決人際問題,無論是男女、夫妻情感、親子互動、同事或團體小圈圈等都能迎刃而解。
★第三步:社會生活不盲從,懂挑對時機做自己
人類是群居動物,也因為多人一起生活勢必產生「規則」,並且經過長時間積累與傳承會形成文化和「群體潛意識」,深刻地影響人們情緒和作為,甚至是大規模的集體性行動。
身處社會環境當中的你,很難置身事外而受到他人影響與各種考驗,萬一稍有不慎很容易被人利用成為共犯做出違法行為,也可能遭到詐騙、被排擠或成了網路霸凌的受害者,結果不僅身心受創、財物損失,嚴重時還會影響生涯前途與家庭生活。
本書中,作者列舉多個人們易掉入的人際問題與陷阱,並提出該怎麼面對、如何全身而退,以及辨別是非不盲從的方法。譬如──
◎利用盲點的騙徒陷阱
雖然生物本能可趨避危險與惡意,但在人類詐騙伎倆下完全發揮不了作用。騙徒其實利用了人性的心理盲點,利用資訊落差,引導當事人錯誤判斷。當對方佈局掌握了你的情緒、引爆焦慮,就會限縮原本思路,並在明示╱暗示下做出錯誤決斷,最後「被賣了還謝謝對方」。
◎社會集體焦慮的產物
媒體每天產出大量挑起情緒的報導,我該隨著眾人一起憤慨嗎?面對未知和動盪,社會常陷入一種集體焦慮,並藉由情緒的抒發來逃避焦慮。我們可以透過持續學習、小心查證,自主思考避免跟風。
◎非友即敵的職場排擠
我雖內向但做事認真,為什麼落得被同事排擠?職場關係建立於利益之上,只做好本分難免給人不夠積極的負面印象。試著主動協助同事或公司雜務,當別人發現你有價值便更願意和你親近。
◎銘印效應的情感渴望
如何分辨某種行為是不是愛情?常常你只是太渴望投入關係,才會因對方的小舉動而盲目地產生依附感。克服這種情感的銘印效應,你必須先愛自己,知道自己的價值並不來自他人的施捨。
掌握個人、團體、情境三大因素如何互相影響,就能以鷹眼鳥瞰全局、擁有更多選擇,不再身不由己,擺脫盲從委屈!
。
#電子書購買連結:
讀墨(Readmoo)連結 https://readmoo.com/book/210186425000101
博客來 連結 https://www.books.com.tw/products/E050097031
檔案格式:EPUB流動版型
建議閱讀裝置:手機、平板
TTS語音朗讀功能:無
檔案大小:3.1MB
其他電子書連結:
Mybook 連結 https://mybook.taiwanmobile.com/profile/BAB01001000104201
KOBO樂天連結https://www.kobo.com/tw/zh/ebook/Y55D8tpWSj2d3jdHxM40HA
Hami 連結 https://bookstore.emome.net/Stores/index/2/121100/new/0100322519
Hyread凌網 連結 https://ebook.hyread.com.tw/bookDetail.jsp?id=255197
Google pay連結 https://play.google.com/store/books/details/%E6%9E%97%E4%BB%81%E5%BB%B7_%E6%8C%91%E5%B0%8D%E6%99%82%E6%A9%9F%E5%81%9A%E8%87%AA%E5%B7%B1_%E5%86%B7%E7%9C%BC%E4%B8%8D%E5%86%B7%E5%BF%83%E7%9A%84%E8%99%95%E4%B8%96%E6%99%BA%E6%85%A7?id=U0k3EAAAQBAJ
判斷檔案格式 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
銀行如何提供超級個人化服務?百人數據團隊靠AI打造中信腦
為了顧及全產品、全客群、全通路、全覆蓋,中國信託採取的對策是走入AI與大數據,更為發展AI應用訂下3大KPI,來掌握研發資源的最適化;今年,中信更成立數據治理委員會,希望將數據治理走向更全行化的關鍵議題
文/李靜宜 | 2021-06-10發表
「透過科技力,來創造競爭力。」中國信託銀行數據暨科技研發處處長王俊權,用一句話點出中國信託大力發展AI與大數據的戰略核心。
3年多前,中國信託定調以AI與大數據作為主要發展方向,並成立了數據研發中心,要用AI來加值業務場景的服務與產品。設立初期僅有一人,到現在已擴大為百人團隊,更在2020年初正式提升為數據暨科技研發處。王俊權正是該團隊的一號員工,更是中國信託內部大力推動AI與大數據的關鍵人物。
中國信託的經營策略是,顧及全產品、全客群、全通路、全覆蓋。而為了守住既有的優勢,中信採取的對策是走入AI與大數據,來作為轉型的利器。不只要轉型,王俊權表示,中信更希望透過AI與大數據,孵化出不同於以往的經營模式。
「CTBC+AI」是中國信託發展AI的大方向,在各業務線上,都能將既有的經營方法加上AI,來提升效率與效能,更要以這樣的科技力創造競爭力。更以優化、平臺、全面、轉型、顛覆這5大階段任務,往下推動AI。
王俊權解釋,中信的策略是,從最小且最有把握的項目開始,所以,透過AI來優化既有的經營方式,是中信切入AI的第一項任務。運用AI優化的專案成功後,下一步,中信就能將AI技術進一步平臺化;有了平臺之後,就能將AI技術全面導入到銀行。
走過了優化階段、平臺階段到全面發展階段,AI已經落地到中信的金融場景,也陸續有了一些階段性成果。王俊權表示,中信現在聚焦「轉型」與「顛覆」,希望透過AI幫助組織轉型,最終期待是要用AI提出顛覆的想法,創造新的經營模式,他透露,目前已有幾個專案正在進行中。
依循著CTBC+AI這項大主軸,中國信託打造了「中信腦」,定調3條研發路線: 電腦視覺、自然語言處理(NLP)、機器思考,也成立了3大實驗室,聚焦研發6大AI應用核心,包括了精準行銷、市場預測引擎、文字與文件辨識應用、人臉與物件辨識應用、機器閱讀到機器對話。從應用場景來看,則鎖定營銷經營、流程優化、風險控管這3項。累計至今,中信在業務單位落地的AI專案超過了20個。
第一類應用場景的AI,中信稱為「營銷經營+AI」,囊括個人化推薦、需求預測,目的是協助增加收益,並提升客戶滿意度、客戶資產、新申購產品數等。王俊權提到,像是推薦引擎專案,中信金控整體客戶數有1,100多萬戶,產品與通路又多,需要透過AI推薦引擎來實現精準行銷,預測顧客未來的金融需求,才能進一步推薦。中信也將這類預測技術,應用到金融商品的預測,比如房價預測、股市預測、匯率預測等。
「流程優化+AI」則是中信第二大類應用場景,包含法金作業流程、客戶申請流程、線上作業流程,希望用來協助內部提升作業效率,來減少作業成本,最終目的也同樣要能夠提升客戶滿意度。 目前,中信內部有多項端對端的流程數位化專案,像是個金、法金、AML(反洗錢)、HR等業務,都有導入AI來優化既有流程。
最後一類場景的應用是「風險控管+AI」,則應用在AML作業、偽冒偵測、稽核,來改善內部作業效率,減少風險的損失。比如,王俊權提到,前年底,中信銀行上線了一套用自然語言處理技術分析負面新聞的平臺,這個AI反洗錢專案的成果,後來更從臺灣擴大應用到7個國家的海外分行。
王俊權表示,3大實驗室所負責的6大AI核心,就是沿著這3大類應用分頭進行,其中,因為銀行面對數位化的壓力較大,所以,又以銀行為應用主力,再逐漸將AI技術擴大到金控旗下子公司,如投信、台灣人壽、中國信託資融等。
自行培養AI研發能力,更訂定3大AI管理KPI
AI發展策略上,中國信託除了自主研發,也會與廠商協作。不過,這兩種策略該如何拿捏,中信內部也走過一段辯論的路。王俊權表示,最後的判斷依據是,「金融業需要的核心能力,中信會投入有限的研發資源。若不是中信認為的核心能力,則盡可能用市場上的解決方案,來加快回應市場的時間。」
舉例來說,銀行業使用分析模型並非新鮮事,AI技術與傳統統計回歸最大的不同是,能夠處理大量非結構數據,像是人臉、電文等資料,可是,這些數據機敏性較高,如果銀行不能自行掌握技術,而需委外,王俊權認為,第一個問題就是,銀行創新的保密性較弱,再者,廠商進入銀行接觸到如此多的機密性資料,有時也有法遵問題。
尤其,金融業對個資的管制嚴格,非結構化資料很難離開金融業,但是,在臺灣,許多AI技術原廠來自海外,對於銀行來說,整體應用或導入的彈性都相對較低,這些都是中國信託選擇培養自家AI研發能量的關鍵因素。
中信在AI應用發展策略,更訂出3大關鍵績效指摽(KPI),作為研發資源最適化的參考。王俊權表示:「對資源有限,需求無限的單位而言,研發的管理是一大關鍵。」首先,中信不會輕易增加AI生產線,因每開一條生產線就會涉及維運與資源分散的議題。所以,「AI生產線的管理」是第一項KPI。
「AI研發資源調度的管理」是第二項KPI。王俊權提到,資源有限狀況下,應該分配多少資源,投入短期的落地變現,還是長期的亮點顛覆,「是一種決策的藝術。」過去,中信希望AI可以迅速擴大到各單位,所以,王俊權採取80/20法則,將80%的資源用在短期落地變現,讓大家有感,保留20%在真正創新的研發。不過,他表示,這個比例每年或每季會進行調整,要讓研發資源投入到需要的地方。
第三項KPI則是「核心複用的比率」,也就是同一項核心技術盡可能重複利用的比率。王俊權要求研發團隊,每條AI生產線至少要有3個落地應用。目前,中國信託共有6條AI生產線,以及20幾個AI落地應用的專案,他提到:「平均每條AI生產線,有3~4個核心複用。」未來,更希望將每個AI核心,擴大到金控內各個應用,所以,要盡可能提升核心的複用,他對團隊的期待是,能提高到兩位數的複用率。
他進一步舉例,3年前,中信導入工研院智能文審技術,來辨識客戶申辦信用卡、貸款所需檢附的財力證明,像是存摺、扣繳憑單等金融常用的固定格式文件。去年,中信將文字辨識應用,複用到分行的場景,上線AI票券辨識服務,在審票機中加入AI、OCR技術來辨識支票,來減少櫃員人工審票與顧客等待的時間,及提升作業人員登打的產能。
目前,中信已做到一張支票上的7個要件,包括到期日、抬頭人、金額、禁止背書轉、發票章讓章或手寫、背書、帳號,都能夠用AI辨識。王俊權提到,中信將自行研發的印刷體的文字辨識核心、手寫英數的AI辨識核心、文印鑑辨識技術,通通導入支票辨識上,「這就是一種AI核心的複用」。此外,為了持續優化辨識正確率,中信更導入AI反饋機制,內部自己發展出標記功能,來改善標記效率,長期目標是達到9成的辨識正確率。今年,中信預計將該AI應用擴大到22家分行。
中信還有另一項AI核心應用是人臉與物件辨識應用,王俊權坦言:「人臉辨識技術,對於組織的轉型與顛覆是亮點有餘,可是力道不足。」不過,若能結合防偽能力及數位流程,可能會創造出藍海的新應用。中信正在思考,如何運用人臉辨識、活體辨識、微表情辨識、情緒辨識等AI核心,交錯組合來打造遠端核身相關應用。
金融業需緊跟科技的腳步,轉變為自身的競爭力,才能在指數型成長的趨勢下,站上領先地位。AI與大數據,正是下一波競爭力的最大利器。─── 中國信託銀行數據暨科技研發處處長 王俊權
推動超級個人化服務,中信靠大數據建立5大行銷策略
「中信銀行每個月有1.5億筆的金融數據,1.9億筆的非金融數據。更可觀的是,疫情期間,顧客更加喜歡使用數位服務,每月高達2億筆的顧客數位數據。」王俊權首度揭露了中信內部統計的海量數據。不只如此,中信銀行1年與顧客會有20億次的行銷溝通,顧客造訪行動銀行、網路銀行或到行銷網頁觀望的次數,更是高達16億次。
「中國信託的數據含金量很高,因此,全都要採集起來,作為銀行KYC的關鍵第一步。」他提到,光在2017年到2018年這段期間,中信內部就採集了大量數據,來建立360度客戶全景標籤。即便,當時各個單位已有自己的全景標籤,中信仍認為要有一個可以全行共用的主數據庫。
有數據來了解顧客,銀行就能出手,中信的策略是以數據掌握顧客人生不同階段需求,提供超級個人化服務。王俊權表示,中信策略是運用AI與大數據,透過個人化溝通方式,來提升顧客的成交機會。中信更先將這種作法,落地到銀行的「艱困區」,若在艱困區測試後有成效,再轉移到「黃金區」主戰場。「一方面不會影響到既有的業務動能,另一方面團隊也會比較有信心。」
在推動超級個人化服務,中信採取了5大行銷策略,並各自搭配合適的AI技術。第一項策略是使用最適合的通路對不同顧客溝通;第二項是尋找顧客有興趣的話題來互動,王俊權透露,今年底將從人工轉為全自動化,用AI生成銀行與顧客行銷的文案。
選擇對的時間,則是第三項策略,比如,當外幣跌到一定數值時,跟該名顧客歷史申購外幣的成本有競爭性,就能在此時發送推薦資訊給顧客。
第四項策略則是打造貼合顧客需求的產品,他提到,中信已有不同產品的預測模型,能預測未來3個月或1周後,該名顧客可能需要的產品。可供業務單位、EDM數位行銷,來聚焦其中高成交率的顧客。最後一項策略是對的活動,即便是賣同一項產品,不同活動的優惠或行銷設計都要不一樣。
王俊權認為,不僅不要過度叨擾顧客,更希望提供一次就能擊中顧客的服務。甚至,目標是做到自動化行銷,他透露,目前正在建置平臺的階段,除了要能自動採集數據,更要自動反應顧客下一步的預測,讓銀行出手可以更快,或盡可能減少PM或行銷出手時會遇上的人工斷點,甚至,讓每次出手後的反饋可以更為即時,來推動多波段行銷。
成立數據治理委員會,優先梳理2類數據
「數據治理是比下水道還要更下水道的底層工程。」特別對於大型金融機構來說,海量的數據勢必要有與過往不同的梳理方式,王俊權如此說著。
因此,今年中信銀行成立了數據治理委員會,由總經理親自主持,各個業務單位主管都參與,「希望將數據治理走向更全行化的關鍵議題。」他坦言,今年是試行階段,但中信已經注意到這個趨勢,而且必須往這方向走。
中信在數據治理特別強調「以用為治」,去年,更研究了全世界數據治理做得較好的企業,比如,數據治理發展超過20年的華為。王俊權坦言:「對中信而言,數據治理既然是一場長期抗戰,就必須明確為何而戰。」
由於資源有限,中信在數據治理的戰略,優先從兩類業務來推動,第一類是不能犯的錯,這類資料的處理一旦犯錯,銀行容忍度很低,如監理報送這類數據就需要優先梳理。另外一類是業務效益較大者,王俊權表示,若沒有好的數據治理標準,業務效益很難有長期的呈現。這是中信今年訂下數據治理的方向,也希望從小開始,慢慢擴大到全行。
經理人小檔案
王俊權
中國信託銀行數據暨科技研發處處長
學歷:臺灣大學國際企業研究所商學碩士
經歷:早年在美國矽谷的科技公司做美股分析,回臺後陸續待過4家銀行,主要負責風險管理;2005年加入中國信託銀行擔任全球個金風險管理處處長,2018年兼任數據研發中心最高主管;現為中信銀行數據暨科技研發處處長,兼任中信金控數據主管
附圖:中國信託銀行數據暨科技研發處處長 王俊權 (攝影/洪政偉)
資料來源:https://www.ithome.com.tw/people/144842?fbclid=IwAR0XaBPczoiqTWTEQH8qHfNDbmyyTpA43Akd2gYWhsBbh0oIbWsBNWdF4Fk