[爆卦]人工智慧醫療爭議是什麼?優點缺點精華區懶人包

雖然這篇人工智慧醫療爭議鄉民發文沒有被收入到精華區:在人工智慧醫療爭議這個話題中,我們另外找到其它相關的精選爆讚文章

在 人工智慧醫療爭議產品中有53篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, 創新工場今年和全球三大管理顧問集團BCG波士頓諮詢合作了一個AI賦能產業的專題研究,我在開篇專文提到「+AI」的未來,定制化服務的需求要遠多於標準化。未來還會有這個研究的系列文章,將陸續分享給大家。 李開復:人工智慧已從「AI+」邁向「+AI」-- 本文来自BCG微信公眾號,經授權轉載。 我曾經...

 同時也有1部Youtube影片,追蹤數超過6萬的網紅巴打台,也在其Youtube影片中提到,香港今日社論2020年09月23日(100蚊花旦頭) https://youtu.be/zkfjDJl1iJM 請各網友支持, 課金巴打台 (過數後請標明所支持的節目或主持, 把入數收據WhatApps 至 : 94515353 ) - 恒生 348 351289 882 - 中銀 012 885...

  • 人工智慧醫療爭議 在 Facebook 的最佳貼文

    2021-08-02 18:24:56
    有 419 人按讚

    創新工場今年和全球三大管理顧問集團BCG波士頓諮詢合作了一個AI賦能產業的專題研究,我在開篇專文提到「+AI」的未來,定制化服務的需求要遠多於標準化。未來還會有這個研究的系列文章,將陸續分享給大家。

    李開復:人工智慧已從「AI+」邁向「+AI」-- 本文来自BCG微信公眾號,經授權轉載。

    我曾經預測過未來20年,AI的發展將會在中國帶來影響深遠的產業變革。這是基於在大陸,AI有著明確且豐富的落地應用場景,已經有大量的AI企業活躍於這些垂直領域,積極探索市場化的路徑。作為擅於趨勢前瞻的TechVC,創新工場已經投出了7家AI獨角獸。中國傳統行業規模巨大,正處於科技驅動的升級轉型關鍵時期,我們希望通過科技的力量,為傳統企業降本提效,推動中國實體經濟的發展。

    近期,我帶領創新工場團隊與BCG波士頓諮詢旗下的亨德森智庫合作,推出「AI融合產業:‘改造者’如何促進AI普惠」系列研究,通過介紹創新工場投資的AI企業如何賦能傳統行業,探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑,以期對行業企業應用AI有所啟迪。

    以下為系列研究的開篇內容:

    系列導讀

    眾所周知,中國大陸在人工智慧(AI)領域的發展世界領先,尤其在產業應用方面,各行各業都開始嘗試在產業鏈條的不同環節應用AI,以最大化生產與服務的效率。BCG與MIT於2020年發佈的年度AI1報告調研顯示,2020年,在大陸,76%的企業都或多或少應用了AI2,而這一數值在美國是41%,在歐洲是44%。

    除卻政府及資本市場的支持、充分的市場競爭與資料供給、勞動力紅利逐漸消退等因素,我們發現,有另一大因素至關重要——在這裡,人工智慧有著明確的落地應用場景,大量AI企業活躍於這些垂直場景中,充當產業中傳統企業應用AI的橋樑,我們稱之為“改造者”。“改造者”通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。

    本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:‘改造者’如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑,以期對行業企業應用AI有所啟迪。

    創新工場由李開復博士創辦于2009年9月,作為國內頂尖的科技型創業投資機構,創新工場深耕在人工智慧&前沿科技、自動化、B2B企業服務、醫療、消費、互聯網等領域,並不斷探索與創新,致力於打造集創業平臺、資金支援、投後服務等的全方位生態投資服務平臺。

    對談實錄

    Q1
    我們知道您接觸過非常多的人工智慧企業,您認為當前人工智慧的應用和發展呈現出什麼樣的趨勢?

    李博士:起初,發展通用性人工智慧技術的企業有很大的規模優勢,因為只有少數企業掌握圖像識別、語音辨識等技術。比如,在圖像識別領域可能只有商湯科技和曠視科技這樣的頭部企業具備顯著的技術優勢,他們天然能夠佔據更大的市場份額。

    但是橫向的、通用性的技術正在快速地大眾化(commoditize),越來越多的企業逐漸掌握相關技術。以圖像識別為例,攝像頭公司、物聯網設備公司,甚至醫療器械公司都開始具備這項能力。在過去,企業僅利用技術層的優勢就能夠攫取價值,如今這變得不再容易。AI已經從「AI+」的黑科技發明期邁向「+AI」的應用為王階段。「AI+」仍會有價值,但「+AI」則能創造更大的經濟貢獻。更何況科技巨頭可以迅速地以價格、規模等優勢搶佔市場。總而言之,能夠攻破一項技術或平臺的方式太多了。

    當然,在特定領域有特殊技術優勢或重大突破的企業依然能夠變現其技術優勢的價值,只不過它們能夠領先市場的時間視窗相比於過去也可能會更短,這些企業需要思考除了技術突破之外,如何能夠迅速地找到落地場景,進而探索市場化的路徑。

    與橫向通用技術相對的,垂直的、行業特定的技術解決方案更能夠建立壁壘。在我看來,各個垂直行業都會出現垂直技術企業的爆發機會。中國企業不像美國企業,比如在企業管理軟體方面,由於美國企業標準化程度更高、數位化基礎更強,科技巨頭更容易整合服務,而中國企業,特別是傳統企業行業各有特點,需求各異,要非標得多、碎片化得多,可直接嵌入AI解決方案的現成平臺並不多。中國傳統行業規模巨大,正處於科技驅動的升級轉型關鍵時期,AI、自動化等平臺技術將為其降本增效,創造出巨大的經濟價值。在這個過程中,垂直、特定的行業技術解決方案有望在企業服務賽道上 “彎道超車”,汽車、銀行等各行各業都可能湧現出全新的、垂直的、創新式的行業特定的AI解決方案。所以說,「+AI」的未來,定制化服務的需求要遠多於標準化。

    那麼定制化的服務如何定價?技術企業需要深入到行業當中、業務流程當中,識別人工智慧能夠實現的、替代的價值。中國的AI企業每天都在反覆運算,它們剛開始時可能擁有某種通用技術,然後再根據具體的商業問題和場景不斷定制化——思考這項技術能為製造業,又或者醫療健康行業帶來什麼改變?該如何銷售、銷售給誰?在企業中,誰有興趣買?又是誰在做購買決策?與之相應地,AI企業需要再調整其商業模式。

    Q2
    我們理解人工智慧技術企業需要更深入到垂直行業中去,那另一方面,傳統企業又應當如何應用AI?

    李博士:當前大量中國傳統企業在爭先恐後地應用AI,或者嘗試應用AI,就像在電氣時代誰沒有應用電力就會被自然淘汰一樣。尤其是在保險、零售、電商等行業,企業不及時擁抱AI可能就會被新的AI玩家顛覆,或者被應用了AI的競爭對手顛覆——每一次AlphaGo、AlphaFold的突破都會加劇企業的這種焦慮感。另外在經濟下行期,企業也有提升生產管理效率和節降成本的需求,需要尋求像流程機器人之類的自動化的解決方案。

    在我看來,傳統企業需要滿足以下三方面的要素,才能夠有效地應用AI:

    ■ 開明的決策者。技術的應用會給傳統的企業運作模式甚至業務模式帶來顛覆,需要開明、堅定的決策者在整個企業組織中一以貫之地推動變革,來應對可能出現的各類阻力和反對的聲音。

    ■ 切實可行的計畫。找到可落地的速贏點並付諸實踐,借此向員工展示AI應用的巨大價值與潛力。比起一上來就全面鋪開,尋找單點進行突破顯然更加容易,這一單點最好是非爭議性的、非業務核心的、風險較低的,從這一單點再慢慢地向整個業務流程延展,通過單點速贏逐漸增加員工對AI的理解和信任。

    ■ 數據。企業需要有高品質的、與業務緊密相關的標識資料以及回饋閉環,將企業不同部門或子業務緊密相連。我們見到過太多失敗的AI應用專案都是敗在資料上,因為企業缺乏高品質的資料。

    ■ 要點回顧

    1
    當前,大量行業通用性的人工智慧技術均面臨迅速的大眾化,而垂直行業領域的專識變得更加重要,垂直領域的AI應用成為大勢所趨。

    2
    傳統企業需要抓住時間視窗,憑藉多年深耕行業的經驗積累,在AI技術企業追趕行業知識的檔口自我顛覆、自我革命。

    在BCG看來,傳統企業擁抱AI有多種方式:自建AI能力,與科技企業形成合作或合資企業,以及在這個系列中我們將重點探討的——與AI技術企業合作形成垂直行業生態圈等等。

  • 人工智慧醫療爭議 在 信傳媒 Facebook 的最讚貼文

    2021-08-01 23:00:47
    有 9 人按讚

    個資很重要,醫療、防疫也很重要,如何取捨更是重要的課題🤔🤔🤔

    #個資法規 #數位監控 #AI時代 #健保資料庫 #資料保護官 #挪威 #NDPA

    ⭐️快加入【信傳媒財神到】社團一起財富自由:https://is.gd/pMrY87
    ⭐️掌握更多訊息,快加入信傳媒Telegram:
    https://is.gd/a5lUNM
    ⭐️好玩有趣的新聞分享,歡迎加入信傳媒IG:https://tinyurl.com/y6oqqqbh

  • 人工智慧醫療爭議 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2021-06-13 13:41:48
    有 0 人按讚

    AI 助陣醫學、防疫,個人隱私難兩全?

    2021/06/09 研之有物

    規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。

    評論

    本篇來自合作媒體研之有物,作者周玉文、黃曉君,INSIDE 經授權轉載。

    AI 醫療、科技防疫的人權爭議

    健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?

    中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。

    「天網」恢恢,公衛醫療的新利器
    自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。

    2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。

    隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。

    國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?

    中研院歐美所副研究員何之行認為,原因之一是,

    《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。

    健保資料庫爭議:誰能再利用我們的病歷資料?

    來看看曾喧騰一時的「健保資料庫訴訟案」。

    2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。

    民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。

    但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。

    種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。

    我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?

    「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。

    去識別化爭點:個資應該「馬賽克」到什麼程度?

    何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。

    「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。

    2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。

    回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?

    何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。

    現行法令留下了模糊空間,那麼他山之石是否能提供參考?

    以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。

    退出權:保留人民 say NO 的權利

    另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。

    何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。

    近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。

    參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。

    歐盟 GDPR 個資保護的四大原則

    健保資料庫只是案例之一,當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。

    因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。
    歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則。

    其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。

    然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!

    大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。

    「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。

    芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。

    這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。

    科技防疫:無所遁形的日常與數位足跡

    當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。

    2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!

    挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。

    為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。

    首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。

    此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。

    最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?

    換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。

    「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:

    數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。

    當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!

    AI 時代需要新法規與管理者

    不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。

    例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」

    另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,

    如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。

    綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」

    過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」

    「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。

    資料來源:https://www.inside.com.tw/article/23814-ai-privacy-medical?fbclid=IwAR0ATcNjDPwTsZ4lkQpYjvys3NcXpDaqsmE_gELBl_UNu4FcAjBlscxMwss

  • 人工智慧醫療爭議 在 巴打台 Youtube 的最佳解答

    2020-09-23 10:30:06

    香港今日社論2020年09月23日(100蚊花旦頭)
    https://youtu.be/zkfjDJl1iJM

    請各網友支持, 課金巴打台
    (過數後請標明所支持的節目或主持, 把入數收據WhatApps 至 : 94515353 )
    - 恒生 348 351289 882
    - 中銀 012 885 1 086914 9
    ( 戶口名: Leung Wai in Tammy)
    - 轉數快FPS 3204757
    - PayMe 94515353
    - Paypal : tammyleung96@yahoo.com.hk

    巴打台購物網址
    https://badatoy.com/shop/
    巴打台Facebook
    https://www.facebook.com/badatoyhk/
    巴打台Youtube Channel:
    https://www.youtube.com/channel/UCmc27Xd9EBFnc2QsayzA12g
    ------------------------------
    明報社評
    第三波疫情放緩,本港社會經濟活動陸續重開,中小學今天起分階段復課是重要一步,然而香港能否走出疫情迴圈、實現可持續復常,仍須拭目以待。市民抗疫疲勞積累已久,隨着防疫措施逐步放寬,消閒群聚、「報復式消費」等現象甚為普遍,中秋前後疫情反覆風險不能低估。政府眼前要務仍是嚴防疫情復熾,同時亦要放眼長遠,思考香港如何「疫境前行」。受疫情和民情影響,本港旅遊及相關行業可見未來難復舊觀,經濟和就業市場必受影響,政府需要及早籌謀,一方面加快推動醫療創科及智慧城市建設,另一方面則借助大灣區,長遠為港人提供更多就業和發展機會。本港疫情趨向穩定,過去一周新增60多宗病例,約三分之一屬本地感染,源頭不明個案只有單位數,可是社區仍有隱形傳播鏈,乃是不爭事實,社會經濟活動重開,步伐必須審慎。

    蘋果頭條
    12名港人上月23日早上從西貢布袋澳出發,疑乘搭快艇前往台灣途中被中國海警截獲,被拘留在深圳鹽田看守所至今已經整整一個月,家屬得不到任何消息;聘請的內地律師又被告知,當事人已經自己在看守所內聘請了「官派律師」。這一個月,被拘捕者狀況未明,家屬只能尋求議員協助,政府遲遲沒有給予恰當的援助。事發已一個月,深圳公安如沒有其他原因,應最遲在今日決定是否提請檢察院逮捕12港人;最遲在10月1日,檢察院須決定是否批准逮捕。中國海警在事發後3天,即8月26日,才於微博通報23日在粵港東南海域查獲一艘涉嫌非法越境的快艇,船上載有十餘名涉嫌非法越境人員,當時沒有說船上疑犯為甚麼身份、甚麼國籍。

    東方正論
    新冠肺炎疫情在港爆發接近九個月,一波未平一波又起,不但威脅市民的健康性命,亦嚴重打擊經濟。政府先後推出三輪防疫抗疫基金,被指杯水車薪,各行各業「吊鹽水」,其中又以眾所周知的旅遊業界最瀕危,對於第三輪抗疫基金大大縮水,高呼極度失望,宣布陷入危急存亡之秋,要求政府盡速救亡。業界表示,自從去年起,旅遊業生意已經大跌,入境遊減少一半,出境遊又跌兩成,今年疫情爆發後情況更差,不少旅行社八個月接近零收入,業界敦促政府救亡,可惜官員只是表示理解,出爐措施及效果都是小恩小惠。三輪抗疫基金三千億元之中,旅行社得到資助少於百分之一, 目前已有七十多間旅行社結業,其餘有開門的都在大量裁減人手,有些甚至減至僅剩五人經營。

    星島社論
    經歷近三年研究,學校課程檢討專責小組昨向教育局提交最終報告。備受關注的高中通識教育科,建議維持必考,但把獨立專題探究改為選修的延伸單元,與筆試成績脫鈎,日後選修考生將另列成績,作為大學收生考慮;課程內容建議恒常檢視,適時更新當代「已成熟課題」,避免師生過分追趕時事議題,並支持教科書納入送審機制。小組更建議教育局與考試及評核局就該科擬題、審題等「加強共識與通力合作」,主席陳黃麗娟強調並非要求當局參與文憑試擬題,亦與早前試題爭議無關。學校課程檢討專責小組的最終報告,提出逾六十項建議(部分詳見附表),高中四大核心科目建議維持不變,但各有調適與縮減。

    經濟社評
    歐洲多國近日第二波疫情爆發,染疫人數新高破紀錄,來勢兇險,部分國家要再度封城,適逢大批香港留學生返英國升學,令不少父母陷入腦交戰,究竟是讓子女繼續學業?抑或暫時回港避疫?港府亦須做好大批港人學生隨時緊急回港準備,並汲取先前教訓,務必在檢疫上做到滴水不漏,同時嚴控本地感染,查找源頭不明個案,才能避免疫情再起。西班牙上周平均日增逾1萬宗確診,比3月高峰期還要多,迫使馬德里當局周一宣布再封城,只有上班、上學和求診才可離開社區。英國周一新症4,383宗,重回4月水平,首相約翰遜宣布提升疫情級別至第二高的4級,並收緊防疫措施,強制餐廳酒吧晚上10時關門。德國和挪威要再實施限聚令,意大利則將巴黎和法國疫情嚴重地區,列入出入境管制名單內。

你可能也想看看

搜尋相關網站