[爆卦]不連續函數極值是什麼?優點缺點精華區懶人包

雖然這篇不連續函數極值鄉民發文沒有被收入到精華區:在不連續函數極值這個話題中,我們另外找到其它相關的精選爆讚文章

在 不連續函數極值產品中有17篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【處處極限不存在的函數】 . 我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個...

 同時也有99部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本習題練習計算一個極大容積問題,雖然它本來應該放在高中問題、或是微分判別法的章節,但放在這邊一樣是呈現連續函數必有極值,只是這個極值不那麼好找 (若不用算幾不等式) 的概念。一起來體驗看看吧 【勘誤】 無,有任何錯誤歡迎留言告知 【習題】 檔案:https://drive.google...

不連續函數極值 在 胖胖龜 胖讀時光 閱讀 書籍 Instagram 的最讚貼文

2021-04-04 19:55:22

失敗伴隨著痛苦,失敗煽動著「我應該怎樣怎樣」跟「我原本可以怎樣怎樣」的情緒,而這意味著人的四周往往潛伏指責與自卑這兩種情緒。 1、我們如果夠勇敢,而且三不五時勇敢,那跌倒就是必然,這就是脆弱的原理。 2、一旦以勇敢之名跌倒,就永不可能回頭。 3、這旅程專屬你一個人,但任誰都沒辦法一個人走完這趟旅程...

不連續函數極值 在 啊威Rwei|解壓說|你·我·他的那些日常 Instagram 的最讚貼文

2021-04-04 18:32:13

偷閒去上個課~獲得不少想法跟啟發。 感謝 @jing910145 老師 —————— 些許心得感想整理 「避震器律動—>膝蓋Bounce 製造更多彈跳感 並找到垂直軸中點 會更好發揮」 「邏輯練舞—>舞蹈不只是動作 更包含很多數學函數空間想像力知識$%$@」 「重心輕鬆轉換—>動作才能順暢連續」 「...

  • 不連續函數極值 在 數學老師張旭 Facebook 的精選貼文

    2021-08-03 04:07:07
    有 41 人按讚

    【處處極限不存在的函數】
    .
      我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個問題,那就是在設計了一個在某一點,例如說 a 點,極限不存在的函數以後,要如何改造這個函數,才有辦法讓 a 點「旁邊」的點其極限也不存在。
    .
      (接下來的內容,建議同學們可以拿支筆在紙上按照說明把函數畫出來)
    .
      舉例來說,如果我們設計了一個在 x = 0 這個點極限不存在的函數(例如設定這個函數在 x 小於 0 時其函數值均為 0;而當 x 大於 0 時其函數值均為 1),那麼要如何改造或調整這個函數,才有辦法讓這個函數在 x = 0 的「旁邊」的點其極限也不存在呢?針對這個例子而言,或許可以這樣做:先將這個函數在 x 大於 1 以後的函數值改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 1 的時候極限都不存在,但因為 1 並非 0「旁邊」的數字,所以顯然還要再調整,於是我們再將 x 大於 0.5 以後的函數值都改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 0.5 處其極限不存在,但同樣地,因為 0.5 並非 0「旁邊」的數字,所以我們繼續調整這個函數,下一步當然是將 x 大於 0.25 以後的函數值都改成 0.5,依此類推,再下一步就是將 x 大於 0.125 以後的函數值都改成 0.5,持續這樣的步驟,最終我們會得到一個當 x 小於 0 時其函數值為 0 而當 x 大於 0 其函數值為 0.5 的函數。這個函數當然仍然在 x = 0 的時候其極限不存在,但是原本在調整時的兩點極限不存在,卻因無限持續這樣的步驟,而變回了僅在 x = 0 極限不存在的狀態。這結果實在令人沮喪。
    .
      之所以會產生這樣的狀況,是因為持續了無限次將新增的極限不存在的點向 x = 0 處靠近的緣故。既然如此,那如果不要持續上面的步驟無限次呢?如果僅持續有限次的步驟,那麼在該次步驟的下一次,一定可以把 x = 0 右邊新增的極限不存在的點向 x = 0 再靠近一些,這個推論的結果就是,如果僅持續有限次上述的步驟,那麼就無法達成創造一個在 x = 0 的「旁邊」的極限不存在的點。結果,無論是有限次或無限次操作上述的步驟,最終都無法達成我們的目標。這真的真的非常令人沮喪,因為這意味著從一個點的極限不存在出發,去逐步改造出一個處處極限不存在的函數,方向很可能是錯誤的。
    .
      那麼,該怎麼辦呢?
    .
      面對這個問題,當時的我最終並沒有自己解出來,而是一個比過奧數的朋友在老師公布答案之前成功地解了出來,並告訴我他的想法。
    .
      他告訴我,既然從一個點的極限不存在開始是行不通的,那就一次就創造一大堆極限不存在的點吧!例如一開始的函數乾脆設定成這樣:當 x 介在 n 和 n + 1 之間且 n 為偶數時,將其函數值設定為 0,而其他地方則設定為 1。例如,當 x 介在 0 和 1 之間或介在 2 和 3 之間時,其函數值就是 0,而當 x 介在 1 和 2 之間或介在 99 和 100 之間時,其函數值就是 1。如此一來,我們就獲得了一個在每一個整數點其極限都不存在的函數。
    .
      以此為起點,比起我想的那個例子最初的樣子一次新增了無限多個極限不存在的點,似乎好像有了長遠的進步,但到此階段實際上並沒有解決我最一開始講的問題的癥結點,那就是如何在一個極限不存在的點的「旁邊」創造一個極限也不存在的點。
    .
      為了解決這個問題,我的朋友告訴我,下一步是在每一個「區間」裡進行調整。用例子來說明而剩下類推的話,大概是這樣操作:例如,在 0 和 1 之間,函數值原本都是 0,但接下來把這個區間切割成 10 等分,然後第 1、3、5、7、9 個區間(也就是在 x 介在 0 和 0.1、介在 0.2 和 0.3、介在 0.4 和 0.5、介在 0.6 和 0.7、介在 0.8 和 0.9 之間的這幾個區間),我們把函數值調整成 1,其餘的不動,那麼我們就可以得到一個,除了在所有整數點極限都不存在的函數以外,這個函數在 0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9 的極限也不存在。那如果是在原本函數值為 1 的區間,則在等分割成 10 個區間以後,將第 2、4、6、8、10 個區間的函數值調整成 0。若將上面這些動複製到其他區間的話,那麼在每一個整數區間(就是 n 到 n + 1 的區間)裡面,其十分位數的位置其極限都不存在。
    .
      接下來,再將函數值為 1 的區間等分割為 10 個區間,然後第 2、4、6、8、10 個區間其函數值都調整成 0,而函數值為 0 的區間一樣等分割為 10 個區間,但是是將第 1、3、5、7、9 個區間的函數值調整成 1,那麼,這個函數就變成了一個除了在所有整數點極限都不存在以外,但在每一個整數區間裡面其百分位數的位置極限都不存在的函數。
    .
      再接下來,繼續進行上面的動作,不斷地十等分分割之前產生的區間,並且適當地調整其函數值,使其在任一階段裡面都是前一個區間裡面的函數值是 0 且後一個區間裡面的函數值是 1 ,或前一個區間的函數值是 1 而後一個區間裡的函數值是 0 的狀態,持續無限次,最終就會得到一個在任一點其極限值都不存在的函數了。
    .
      要證明這個函數處處極限不存在有分簡單版和嚴格版,這邊我們先講簡單版,以後有機會再談嚴格版。對於這個函數而言,固定任何一點 a,其左極限只有兩種可能,0 或 1,但因為這個函數被分割地非常地密,而且連續幾個區間在任一階段裡面都是一下子 0 一下子 1 這樣變動,所以這個函數在 a 點的左極限不存在,因此這個函數在 a 點的極限並不存在。最後,因為 a 這個點是任意取的,所以我們可以說這個函數的極限值在任意點都不存在。
    .
      這個答案真的很猛,因為當時在班上只有我那位奧數的朋友給出了教授點頭的答案。
    .
      雖然當初他並沒有辦法清楚地講出左極限不存在的原因,也因為我們還沒學到極限的嚴格定義,所以沒辦法用嚴謹的敘述來證明這樣的函數確實處處極限不存在,但現在回想起來,那位奧數朋友還是很猛!因為他就好像那種天生的小說家一樣,信手拈來就寫出了一本傑出的小說,而我們凡人卻連寫一篇普通的文章都很成問題。
    .
      講到這裡,今天的故事似乎已經講完,但其實還沒,因為這樣聰明的人,並不會只出現我們班上甚至是這個時代而已。
    .
      關於「是否存在一個處處極限都不存在的函數」這個問題,其實在 19 世紀時,就有一位叫做 Dirichlet 的德國數學家,他所創造出來的一種函數(後來稱為 Dirichlet 函數),就是處處極限不存在的函數。這個函數的定義如下:當 x 為有理數時,其函數值是 1;當 x 不為有理數時,其函數值是 0。這樣的函數確實也處處極限不存在,也是我教授當時給同學們預設的答案。
    .
      在這邊我就不文字解釋為何 Dirichlet 函數處處極限不存在了,但我有拍一部影片來說明,如果你想繼續看下去,可以點開我貼在本篇文章留言處的這部影片,我有盡量簡單地解釋為何 Dirichlet 函數處處極限不存在。
    .
      雖然 Dirichlet 函數處處極限不存在,但其實當初 Dirichlet 所面對的問題,並非「是否存在處處極限不存在的函數」,而是「是否存在無法圖像化的函數」。在經過可能類似這篇文章最一開始的那些推敲以後,Dirichlet 創造了 Dirichlet 函數,而這個 Dirichlet 函數就是一個「客觀存在」但「無法圖像化」的函數。並且,除了無法圖像化以外,Dirichlet 函數在數學上也有著很重要的地位,因為他常常是一些直覺上無法察覺的現象的重要例子。例如我們直覺上都會認為只要函數有週期,那麼就會存在最小週期,但 Dirichlet 函數就是一個不具有最小週期的週期函數,因為任意有理數都是它的週期。
    .
      關於 Dirichlet 函數的性質我們就講到這邊,或許以後有機會可以專門寫一篇跟 Dirichlet 函數有關的文章,不過有很多性質都是需要具備更多數學知識以後才能介紹的,所以如果真的要寫的話,那可能就還要再等一陣子了。
    .
      最後,跟大家介紹一下我上面所提到的影片,那是我在 2020 年時所拍攝的一系列微積分教學影片的其中一集。該系列影片基本上有觀念講解、精選範例和補充教材,近期我會開始陸續上傳到這裡,但不是每一部影片都會寫文章來搭配,所以如果你想跟著我上傳的速度一部一部看,而且不漏掉系列裡每一部影片的話,可以關注我在西瓜視頻、騰訊視頻和優酷視頻的頻道;如果你想一次看完我全系列的影片的話,可以關注我在 YouTube、bilibili 或 Pornhub 上的頻道,上面已經上傳了張旭微積分全系列影片。另外這系列影片都有講義電子檔可以搭配使用,如果你想要取得該電子檔的話,請幫我按讚這篇文章和這個粉專、分享這篇文章,並幫我到我的臉書粉專評論處寫個評論,然後私訊我的臉書粉專,我的夥伴就會回覆你講義電子檔的連結。
    .
      感謝你的觀看,希望這篇文章對你有所幫助,有任何問題或想法也歡迎在下面留言告訴我。另外,本文章同步發佈於數學老師張旭的 YouTube 頻道社群、微博、今日頭條、Medium 和 HackMD,若你也有上面提到的那些帳號,歡迎按讚、分享和關注!

  • 不連續函數極值 在 數學老師張旭 Facebook 的最讚貼文

    2021-07-25 22:09:11
    有 1 人按讚

    本週的播放清單如下

    週一:向量函數的積分
    週二:曲面分析與面積分
    週三:旋轉體分析
    週四:三變數函數的積分
    週五:向量函數的極限、連續與微分

    以下是可以許願的清單
    記得只能許願某個重點,不能直接許一整章
    若是有人許過你想許的主題
    可到 YT 許願
    youtube.com/post/UgxOAnbloHj78w6vjI14AaABCQ

    若是想買完整課程請到
    👉 https://www.changhsumath.cc

    【積分(前篇)】  
    重點一 定積分直觀觀念
    重點二 奇偶函數的積分
    重點三 定積分正式定義
    重點四 積分運算性質
    重點五 微積分基本定理 I - 先微再積型
    重點六 不定積分與反導數
    重點七 雙曲函數
    重點八 微分表II
    重點九 四大積分基本方法之一:變數變換法
    重點十 四大積分基本方法之二:三角置換法
    重點十一 四大積分基本方法之三:分部積分法
    重點十二 積分表
    重點十三 四大積分基本方法之四:部分分式法

    【積分(後篇)】
    重點一 進階積分技巧:高次倍角三角函數積分
    重點二 特殊積分形式之其一:含絕對值的積分
    重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
    重點四 微積分基本定理 II - 先積再微型
    重點五 旋轉體積分

    【數列與級數】
    重點一 數列與數列的極限
    重點二 數列極限的運算性質
    重點三 數列連續化求極限法
    重點四 夾擠定理
    重點五 單調數列與有界數列
    重點六 級數
    重點七 級數的運算性質
    重點八 級數審斂法一:等比級數
    重點九 級數審斂法二:p-級數
    重點十 級數審斂法三:比較審斂法
    重點十一 級數審斂法四:極限比較審斂法
    重點十二 級數審斂法五:比值審斂法
    重點十三 級數審斂法六:根值審斂法
    重點十四 級數審斂法七:積分審斂法
    重點十五 級數審斂法八:交錯級數審斂法
    重點十六 絕對收斂和條件收斂
    重點十七 冪級數
    重點十八 冪級數的運算
    重點十九 泰勒級數與泰勒定理

    【多變數函數的微積分】
    重點一 多變數函數
    重點二 二變數函數的極限
    重點三 二變數函數極限特殊求法
    重點四 二變數函數極限運算定理
    重點五 二變數函數的連續
    重點六 二變數函數的偏微分
    重點七 高階偏微分
    重點八 偏微分運算律
    重點九 多變數函數的微分量 (全微分)
    重點十 方向導數
    重點十一 梯度與等高線
    重點十二 等值面與切平面
    重點十三 相對極值、絕對極值和鞍點
    重點十四 拉格朗日乘數法
    重點十五 二變數函數的積分:二重積分
    重點十六 二重積分的極座標轉換
    重點十七 二重積分的應用
    重點十八 三變數函數的積分:三重積分
    重點十九 柱座標與球座標
    重點二十 三重積分的應用

    【向量微積分】
    重點一 向量函數的定義
    重點二 向量函數的極限、連續與微分
    重點三 向量函數的積分
    重點四 曲線分析
    重點五 旋轉體分析
    重點六 向量場與保守場
    重點七 線積分
    重點八 微積分基本定理 for 線積分
    重點九 格林定理
    重點十 梯度、旋度、散度
    重點十一 曲面
    重點十二 曲面分析與面積分
    重點十三 散度定理
    重點十四 史托克定理

    以上就是能許願的清單
    統計到本周六晚上 10 點
    結果會在本周日晚上公告
    然後下周一至五晚上 6 點在我頻道限時首播

  • 不連續函數極值 在 數學老師張旭 Facebook 的精選貼文

    2021-07-11 19:35:48
    有 1 人按讚

    不知不覺許願池計劃已經進到第 7 週了
    本週的播放清單如下

    週一:二重積分的極座標轉換
    週二:冪級數
    週三:曲線分析
    週四:不定積分與反導函數
    週五:向量函數的定義

    以下是可以許願的清單
    記得只能許願某個重點,不能直接許一整章
    若是有人許過你想許的主題
    可以按讚也可以再留一次言

    若是想買完整課程請到
    👉 https://www.changhsumath.cc

    【積分(前篇)】  
    重點一 定積分直觀觀念
    重點二 奇偶函數的積分
    重點三 定積分正式定義
    重點四 積分運算性質
    重點五 微積分基本定理 I - 先微再積型
    重點六 不定積分與反導數
    重點七 雙曲函數
    重點八 微分表II
    重點九 四大積分基本方法之一:變數變換法
    重點十 四大積分基本方法之二:三角置換法
    重點十一 四大積分基本方法之三:分部積分法
    重點十二 積分表
    重點十三 四大積分基本方法之四:部分分式法

    【積分(後篇)】
    重點一 進階積分技巧:高次倍角三角函數積分
    重點二 特殊積分形式之其一:含絕對值的積分
    重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
    重點四 微積分基本定理 II - 先積再微型
    重點五 旋轉體積分

    【數列與級數】
    重點一 數列與數列的極限
    重點二 數列極限的運算性質
    重點三 數列連續化求極限法
    重點四 夾擠定理
    重點五 單調數列與有界數列
    重點六 級數
    重點七 級數的運算性質
    重點八 級數審斂法一:等比級數
    重點九 級數審斂法二:p-級數
    重點十 級數審斂法三:比較審斂法
    重點十一 級數審斂法四:極限比較審斂法
    重點十二 級數審斂法五:比值審斂法
    重點十三 級數審斂法六:根值審斂法
    重點十四 級數審斂法七:積分審斂法
    重點十五 級數審斂法八:交錯級數審斂法
    重點十六 絕對收斂和條件收斂
    重點十七 冪級數
    重點十八 冪級數的運算
    重點十九 泰勒級數與泰勒定理

    【多變數函數的微積分】
    重點一 多變數函數
    重點二 二變數函數的極限
    重點三 二變數函數極限特殊求法
    重點四 二變數函數極限運算定理
    重點五 二變數函數的連續
    重點六 二變數函數的偏微分
    重點七 高階偏微分
    重點八 偏微分運算律
    重點九 多變數函數的微分量 (全微分)
    重點十 方向導數
    重點十一 梯度與等高線
    重點十二 等值面與切平面
    重點十三 相對極值、絕對極值和鞍點
    重點十四 拉格朗日乘數法
    重點十五 二變數函數的積分:二重積分
    重點十六 二重積分的極座標轉換
    重點十七 二重積分的應用
    重點十八 三變數函數的積分:三重積分
    重點十九 柱座標與球座標
    重點二十 三重積分的應用

    【向量微積分】
    重點一 向量函數的定義
    重點二 向量函數的極限、連續與微分
    重點三 向量函數的積分
    重點四 曲線分析
    重點五 旋轉體分析
    重點六 向量場與保守場
    重點七 線積分
    重點八 微積分基本定理 for 線積分
    重點九 格林定理
    重點十 梯度、旋度、散度
    重點十一 曲面
    重點十二 曲面分析與面積分
    重點十三 散度定理
    重點十四 史托克定理

    以上就是能許願的清單
    想看我影片的同學們請在這篇下面許願和投票
    統計到本周六晚上 10 點
    結果會在本周日晚上公告
    然後下周一至五晚上 6 點在我頻道限時首播

你可能也想看看

搜尋相關網站